Dynamics of
 relativistic solar cosmic rays during December 13, 2006 GLE

B.B. Gvozdevsky, E.V. Vashenuyk, Yu.V. Balabin Polar Geophysical Institute, Apatity, Russia

Abstract

The dynamics of relativistic solar cosmic rays during the GLE of 13.12.2006 by modeling technique have been studied. The data of 36 neutron monitors were used in the analysis.
By least square (optimization) methods parameters of relativistic solar protons:

- rigidity (energetic) spectra,
- anisotropy directions
- pitch-angular distributions
were obtained and their dynamical changes studied.

It is shown that:

In the beginning of the event solar protons arrived at the Earth along the IMF as a narrow collimated beam. These particles caused short-lived peak increase on a number of neutron monitor stations.
On later phase a reverse flux (to the Sun) has appeared and the spectrum became appreciably softer. The rigidity spectral exponent changed from 4 to 6 in course of the event.

Outline

1. GLE 13 December, 2006
2. Neutron monitor network and instrumentation
3. Neutron multiplicity registration
4. GLE modeling technique
5. Modeling Results of the GLE 13.12.2006: parameters of relativistic solar protons
6. Dynamics of energetic spectra and pitch angle distribution

The GLE on December 13, 2006

Active region AR10930 on the Sun

Solar flare X3.4/2B happened at 02:26 UT at S06 W24

Ground level effect registered by neutron monitors

Neutron monitors of the Polar Geophysical Institute

Apatity (67.55N 33.34E)

Multiplicity Measurements

New data acquisition system

- Personal Computer
- digital input card Adlink PCI-7233H
- specially written program
allows to measure intervals between pulses.
Thus there is a possibility to determine a multiplicity in a neutron monitor

Multiplicity in a neutron monitor

Multiplicity measured on the neutron monitor Barentsburg during 13 December 2006 GLE

Set of neutron monitors used in our analysis

Method: Formula

$$
\left(\frac{\Delta \mathbf{N}}{\mathbf{N}}\right)_{i}=\frac{1}{8} \sum_{j=1}^{8} \sum_{\mathrm{R}=1}^{20 \mathrm{GV}} \mathbf{J}(\mathbf{R}) \cdot \mathbf{F}\left(\theta_{\mathrm{i}, \mathrm{j}}(\mathbf{R})\right) \cdot \mathbf{S}(\mathbf{R}) \cdot \Delta \mathbf{R}
$$

\mathbf{N} - neutron monitor count rate
\mathbf{R} - particle rigidity
\mathbf{i} - neutron monitor number
θ - pitch angle
$\mathbf{J}(\mathrm{R})$ - rigidity spectrum $=\mathrm{J}_{0} \cdot \mathrm{R}^{-(\gamma+\Delta \gamma(\mathrm{R}-1))}$
$\mathbf{F}(\theta)$ - pitch angle distribution $=\mathrm{e}^{-\theta^{2} / C}$
$\mathbf{S}(\mathrm{R})$ - specific yield function (Debrunner et al., 2004)
To obtain the parameters we solve the nonlinear least squares problem:

$$
S N=\sum_{i}\left[\left(\frac{\Delta N}{N}\right)_{i}^{\text {calc }}-\left(\frac{\Delta N}{N}\right)_{i}^{\text {observ }}\right]^{2} \Rightarrow \min
$$

Asymptotic cones calculations

Neutron monitor directivity for solar and galactic cosmic rays

To account the contribution of oblique incident particles we calculate 8 trajectories launched with zenith angle $\sim 20^{\circ}$. Tsyganenko 2001 model is employed

Modeling result: NM profiles

real increase profile registered by a neutron monitor

- - - profile constructed on model parameters

$-\begin{array}{r}0 \\ - \\ -\quad . \\ \hline\end{array}$

Modeling result: Anisotropy axis

\mathbf{N}	$\mathbf{U T}$	Λ deg	Φ deg
1	$02: 57$	-13	-47
2	$03: 00$	-6	-45
3	$03: 05$	0	-43
4	$03: 20$	8	-52
5	$03: 30$	12	-59
6	$04: 00$	1	-47

Modeling result: Pitch-angle distribution

$F(\theta)=J_{0} \cdot \exp \left(-\theta^{2} / C_{1}\right)\left(1-A \cdot \exp \left(-(\theta-\pi / 2)^{2} / C_{2}\right)\right.$

\mathbf{N}	$\mathbf{U T}$	$\mathbf{J}_{\mathbf{0}}$	$\mathbf{C}_{\mathbf{1}}$ rad 2	\mathbf{A}	$\mathbf{C}_{\mathbf{2}}$ rad 2
1	$02: 57$	$1.3 \cdot 10^{5}$	0.68	0	0
2	$03: 00$	$1.7 \cdot 10^{5}$	0.44	0	0
3	$03: 05$	$3.2 \cdot 10^{5}$	0.46	0.47	0.35
4	$03: 20$	$8.1 \cdot 10^{5}$	6.47	0.79	4.09
5	$03: 30$	$1.8 \cdot 10^{6}$	12.6	0.64	6.01
6	$04: 00$	$2.5 \cdot 10^{6}$	18.4	0.62	9.63

Modeling result: Energy (rigidity) spectra

$$
\mathrm{J}(\mathrm{R})=\mathrm{J}_{0} \cdot \mathrm{R}^{-(\gamma+\Delta \gamma \cdot(\mathrm{R}-1))}
$$

\mathbf{N}	$\mathbf{U T}$	$\mathbf{J}_{\mathbf{0}}$	$\|\gamma\|$	$\Delta \gamma$
1	$02: 57$	$1.3 \cdot 10^{5}$	3.92	0.11
2	$03: 00$	$1.7 \cdot 10^{5}$	4.73	0.14
3	$03: 05$	$3.2 \cdot 10^{5}$	3.59	0.35
4	$03: 20$	$8.1 \cdot 10^{5}$	4.16	0.36
5	$03: 30$	$1.8 \cdot 10^{6}$	6.06	0.06
6	$04: 00$	$2.5 \cdot 10^{6}$	6.91	0.00

Reference:

E.V.Vashenyuk, G.A.Basilevskaya, Yu.V.Balabin, B.B.Gvozdevsky, V.S.Makhmutov, Yu.I.Stozhkov, N.S.Svirzhevsky, A.K.Svirzhevskaya, L.I.Schur

The GLE of December 13, 2006 according to the ground level and balloon observations.
30 ICRC, Paper 0652

Prompt peak

MEPHI Hodoscope (Timashkov D.A. et al. 2007)

Neutron monitors

their asymptotic cones

Prompt peak

Reference:
D. A. Timashkov, Yu.V. Balabin, V. V. Borog, K. G. Kompaniets, A. A. Petrukhin, D. A. Room, E. V. Vashenyuk, V. V. Shutenko, I. I. Yashin

Ground-Level Enhancement of December 13, 2006 in muon hodoscopes data. 30 ICRC, Paper 0298

Conclusions

The dynamics of relativistic solar cosmic rays on data of ground level observations during the GLE of 13.12.2006 have been studied. By least square (optimization) methods parameters of relativistic solar protons: rigidity (energetic) spectra, anisotropy directions and pitch-angular distributions were obtained and their dynamical changes studied. It is shown, that:

1. In the beginning of the event solar protons arrived at the Earth along the IMF as a narrow collimated beam. These particles caused short-lived peak increase on a number of neutron monitor stations.
2. On later phase a reverse flux (to the Sun) has appeared and the spectrum became appreciably softer.
3. On the data of ground based neutron monitors the rigidity (energetic) spectrum was dweived and its dynamics stugied. The rigidity spectral exponent changed from 4 to 6 in course of the event.
