Characteristics of the
Cosmic Ray Ground Level Enhancements on
J anuary 20, 2005, and December 13, 2006, as obtained from
Worldwide Neutron Monitor Data

Erwin O. Flückiger<br>R. Bütikofer, B. Pirard, L. Desorgher<br>Physikalisches Institut University of Bern

erwin.flueckiger@space.unibe.ch

## The 20 January 2005 GLE



## The 20 January 2005 GLE Progress since 29th ICRC and SEE 2005 International Symposium

10 Papers at 30th ICRC
33 Dvornikov et al.
172 Kudela \& Langer643 Vashenyuk et al.658 Vashenyuk et al.
715 Shea \& Smart 1182 Flückiger et al.
862 Moraal et al.897 McCracken \& Moraal
1152 Morgan et al.
1009 Storini \& Damiani

## The 20 January 2005 GLE Spectrum



Bütikofer et al., 2006

## The 20 January 2005 GLE Spectrum

## Durham/Mt. Washington



## Milagro/Climax

## Milagro/Milagro

Higher, unanalyzed Milagro channels

Spectral index softens from 6.5 to $\sim 8$ at $\sim 4 G V$

## The 20 January 2005 GLE Pitch Angle Distribution, Apparent Source Direction




30th ICRC Paper 862, Moraal et al.
Bütikofer et al., 2006 see also this conference

## The 20 January 2005 GLE Two Acceleration Mechanisms?



## $\checkmark$ THE GENERIC SOLAR ENERGETIC PARTICLE EVENT ?

30th ICRC Papers 862, Moraal et al., and 643, Vashenyuk et al. see SEE2007 Papers by Moraal and Vashenyuk

## The 13 December 2006 GLE



This GLE occurred near solar minimum, but it was a large event, exceeding 100\% increase at Oulu

## The Sun on 13 December 2006

## White light



30 nm emission


Ground level effect of a solar flare X3.4/2B S06 W24 02.26 UT


30th ICRC Paper 643, Vashenyuk et al.

## The 13 December 2006 GLE at the 30th ICRC

## "A Maverick GLE" (376 Bieber et al.)

| 15 Papers |  |
| :--- | :--- |
| 168 Stoker | 357 Heber et al. |
| 298 Timashkov et al. | 412 Grigoryev et al. |
| 362 Vashenyuk et al. | 643 Vashenyuk et al. |
| 376 Bieber et al. | 658 Vashenyuk et al. |
| 680 Balabin et al. | 1002 Storini et al. |
| 715 Shea \& Smart | 1073 Eroshenko et al. |
| 897 McCracken \& Moraal | 1173 Tang |
| 172 Kudela \& Langer | 1182 Flückiger et al. |

## The 13 December 2006 GLE



## Increase profiles at neutron monitors

Map of neutron monitors' asymptotic cones. Cross is IMF direction from ACE data


30th ICRC Paper 643, Vashenyuk et al.

## The 13 December 2006 GLE Spectrum



30th ICRC Paper 643, Vashenyuk et al.

# The 13 December 2006 GLE 

## Alternative Advanced Analysis

30th ICRC Paper 376, Bieber et al.

## Spaceship Earth

## Asymptotic Viewing Directions at Start of Event


adapted from 30th ICRC Paper 376, Bieber et al.

- Circles show station geographical locations
- Squares show asymptotic direction for a median rigidity solar particle
- Lines show range (10- to 90-
percentile rigidity) of viewing directions for each station
(-) Circled dot and circled X denote nominal Sunward and anti-Sunward Parker directions, respectively


## Spaceship Earth Event Modeling: Step 1



- Step 1: Individual station data were fitted to an angular distribution of the form

$$
f(\mu)=c_{0}+c_{1} \exp (b \mu),
$$

with $\mu$ cosine of pitch angle, and $c_{0}, c_{1}$, and $b$ free parameters. The symmetry axis from which pitch angles are measured was also a free parameter.

30th ICRC Paper 376, Bieber et al.

## Spaceship Earth Event Modeling: Step 1



30th ICRC Paper 376, Bieber et al.

## Spaceship Earth Event Modeling: Step 2



- Step 2:

The first 3 Legendre coefficients, $f_{0}, f_{1}, f_{2}$, of the derived distribution were computed from $f(\mu)$.

They are shown at left as - "Density",

- "Weighted Anisotropy", and - "2nd Legendre."

Longitude and latitude of the derived symmetry axis are also shown, as is the ordinary anisotropy, $\mathrm{f}_{1} / \mathrm{f}_{0}$.

30th ICRC Paper 376, Bieber et al.

## Event Modeling: Standard Parker Field



- Step 3: The Legendre coefficients as functions of time are fitted to numerical solutions of the Boltzmann equation. Free parameters are the scattering mean free path and profile of particle injection at the Sun, represented by a piecewise-linear function.
- A standard Parker IMF does not yield a satisfactory fit: The optimal mean free path of 0.23 AU provides a good fit to density, but not to weighted anisotropy or $2^{\text {nd }}$ Legendre.
- Based on our experience modeling the Bastille event, we suspect a downstream magnetic mirror may be affecting transport in this event.

30th ICRC Paper 376, Bieber et al.

## Event Modeling: Downstream Magnetic Bottleneck (Preliminary)



- A bottleneck fit works much better. Here, the optimal mean free path is much larger, 1.08 AU, and the optimal bottleneck location is at 1.52 AU .


## A Downstream Magnetic Mirror is supported by a "Fearless Forecast" of the IMF Configuration



Fearless forecast from
http://gse.gi.alaska.edu/recent/archive/20061212/ec8_recent.pdf

- A "Fearless Forecast" (left) suggests Earth was connected to a downstream compression region at $\sim 1.6 \mathrm{AU}$ at event onset
- This is reminiscent of the Bastille event, in which transport was affected by a downstream magnetic bottleneck (Bieber et al., J. Geophys. Res., 567, 622-634, 2002)

30th ICRC Paper 376, Bieber et al.

## GLEs during Solar Cycles 19-23



30th ICRC; Paper 715, Shea \& Smart

## Solar Extreme Events

 Flare Location and Neutral Current Sheet

## see

Shea et al., 1995
$0, \pm 1,2,5,10,20$ MicroTessource surface Field
 DEC 2006

December 13, 2006: S06 W24


## Summary and Conclusions

- Two large GLEs near Solar Minimum - unusual? (see paper by Nymmik)
- Ongoing discussion about two mechnisms for particle acceleration at the Sun (on the basis of the 20 January 2005 GLE)
- New event modeling technique by Bieber et al. suggests „Downstream Magnetic Mirror" for 13 December 2006 GLE
- Location of 20 January 2005 flare was right on neutral line - a prerequisite for a SEE?
- Significance of global NM network confirmed! Perspectives for the future.

