Radiation Environment of the Inner Magnetosphere: Ouiet and Storm Periods

Mikhail Panasyuk Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University

Solar Extreme Events 2007: Fundamental Science and Applied Aspects

SEE 2007: International Symposium Athens, Greece Monday 24 September– Thursday 27 September 2007

40000 km

RB

LEO < 1000km

SEP

The Earth's radiation environment at LEO

Near- Earth space radiation environment:

Count rates (arbitrary units) of protons with energy higher of 0.7 MeV and electrons with energy higher than 0.5 MeV for the NASA SAMPEX Satellite in the low earth orbit (LEO) at ~ 600 km altitude.

Near- Earth space radiation environment:

Count rates (arbitrary units) of protons with energy higher of 0.7 MeV and electrons with energy higher than 0.5 MeV for the NASA SAMPEX Satellite in the low earth orbit (LEO) at ~ 600 km altitude.

Latitude

R-16 dosemeter

Onboard MIR station since 1987 till 2000!

South Atlantic Anomaly

Solar minimum the middle of 90's

Solar maximum – the beginning of 90's

Daily averaged doses rates since 1987

Daily averaged doses rates since 1960 till 1969

The main mechanizm of radiation belt formation

Balance between

transport time (radial diffusion from outer RB edge) - au_t

and loss time - $\tau_{\rm I}$ For inner belt, say at L< 2

But there is a local source for inner RB protons – CRAND

τ_t>> τ_l

The space-temporal structure of the inner radiation belt will be determined mainly by losses only (for steady-state source)

> For high energy protons it is ionization losses with residual atmosphere

MIR station radiation doses in the 22nd solar cycle

2000

Year

Solar cycle flux/atmospheric density variations

RB proton (>10 MeV) flux

Loss time as a function of atmospheric density variations

Solar activity variations

MIR station radiation doses in the 22nd solar cycle

Radiation doses vs GCR variations

ISS expected results

ISS radiation puzzle

ISS/Russian module

R-16 in operation since summer of 2000. SRC (4 instruments DB –8) since summer of 2001.

DB-8 instruments

SRC placements on board ISS

Блок	Расположение				
ДБ-8 №1	Правый борт,				
	за панелью № 410				
ДБ -8 №2	Левый борт,				
	за панелью № 244				
ДБ -8 №3	Правый борт, за				
	панелью № 447				
ДБ -8 №4	Правый борт,				
	за панелью № 435				
P-16	На потолке салона				
	большого диаметра,				
	за панелью № 327				
АИ	Правый борт, за				
	панелью № 447				
БКР	Правый борт, за				
	панелью № 447				

R-16 daily averaged doses rates

DB-8 daily averaged doses rates since 2001

Dynamics of the inner proton radiation zone

Losses:

particle interactions with residual atmosphere

Source:

For ~100 MeV protons - CRAND

Balance between losses and "local" source strength

GCR as a source of SAA protons (CRAND)

Altitude, km

Daily averaged doses rates

Daily averaged doses rates

Conclusions

- 1.SAA anomaly radiation is the principal source of radiation hazard at altitude >350 km
- 2. Long-term variations of radiation doses are dependent both losses and strengh of source(CRAND) of particles during solar cycle

3. During very strong SEE epoch from 2001 till 2004 there was a very quite radiation condition onboard ISS (and at LEO)

Storm periods: SEP penetration at low altitudes

SEP penetration at low altitudes

low-latitude boundary of SEP penetration

October- November'03 Radiation Storm

SEP penetration at low altitudes

October- November Radiation Storm SEP penetration at low altitudes

90 MeV proton's penetration boundary moves toward the equator accordingly with Dst

Meteor-3 data, Skobeltsyn Institute of Nuclear Physics, Applied Geophysical Institute

October- November'03 Radiation Storm SEP penetration at low altitudes

Variation of proton penetration boundary during isolated substorm

Radiation Storm of October-November,2003 ISS dosimetry

SINP, IMBP

DB-8

October- November' 03 vs October' 89 Radiation Storms: ISS/R16 data

Calculated ISS doses vs initial orbital parameters

Calculated doses fo DB8 in dependence of initial longitude of ISS for October, 28,29 event Storm periods: 2. Relativistic electron precipitations from radiation belts

What's new in this field?

2. Relativistic electron precipitations from radiation belts

What's new in this field?

"Catastrophic" precipitations of relativistic electrons

5x10²⁵ electrons during ~8 days

Outer belt: **2x10**²⁵ electrons !

Balloon experiments at high latitudes R. Myllan, et al

Conclusions

1.Radiation "quite-time" level at LEO is mainly defined by the balance between the strength of CRAND and losses at SAA;

2.Radiation " storm-time" level at LEO is mainly defined by SEP's (>1 MeV) penetration pattern at low latitudes, which is ruled by substorm and storm activity;

3. More complex picture one should expect for electron component which is needed for further study

Thank you

SRC placements on board ISS

Блок	Расположение				
ДБ-8 №1	Правый борт,				
	за панелью № 410				
ДБ -8 №2	Левый борт,				
	за панелью № 244				
ДБ -8 №3	Правый борт, за				
	панелью № 447				
ДБ -8 №4	Правый борт,				
	за панелью № 435				
P-16	На потолке салона				
	большого диаметра,				
	за панелью № 327				
АИ	Правый борт, за				
	панелью № 447				
БКР	Правый борт, за				
	панелью № 447				

SEP's doses rates from 2001 till 2003

Dosemeters		24.09.2001, mGrey(mRad)	04.11.2001, mGrey(mRad)	28.10.2003, mGrey(mRad)	29.10.2003, mGrey(mRad)
DB-8 № 1	nonshielded	1,65 (165)	2,60 (260)	6,63 (663)	2,02 (202)
	shielded	0,75 (75)	1,10 (110)	3,19 (319)	1,20 (120)
DB-8 № 2	nonshielded	1,26 (126)	1,14 (114)	2,88 (288)	0,906 (91)
	shielded	0,80 (80)	0,40 (40)	1,16 (116)	0,49 (49)
DB-8 № 3	nonshielded	0,59 (59)	0,75 (75)	2,20 (220)	0,86 (86)
	shielded	0,41 (41)	0,39 (39)	1,45 (145)	0,64 (64)
DB-8 № 4	nonshielded	0,19 (19)	0,09 (9)	0,73 (73)	0,28 (28)
	shielded	0,14 (14)	< 0,04 (<4)	0,60 (60)	0,246 (25)
R-16	nonshielded	1,25 (125)	0,60 (60)	> 0,60 (>60)	0,40 (40)
	shiekded	0,20 (20)	0,10-0,15 (10)	0,25-0,30 (25)	0,05 - 0,10 (5)

- 1. The value of doses highly dependent on particular place inside ISS
- 2. The value of doses highly dependent on particular longitude of ISS during onset of SEP event