The influence of solar activity on the radiation belt relativistic electron dynamics

Athina Varotsou ${ }^{1}$

Reiner Friedel ${ }^{1}$, Sebastien Bourdarie ${ }^{2}$, Geoff Reeves ${ }^{1}$, Tom Cayton ${ }^{1}$, Yue Chen ${ }^{1}$, Josef Koller ${ }^{1}$, Daniel Boscher², Vincent Maget², Ruth Skoug ${ }^{1}$

1. Los Alamos National Laboratory/ISR-1, Los Alamos, NM, USA,
2. ONERA/Department of Space Environment, Toulouse, France

Outiline

\lrcorner Introduction
I Radiation belt dynamics:

- Magnetic storm
- Solar cycle
- Correlation with solar wind activity
- Data base at the Los Alamos National Laboratory
- Solar extreme events of the $23^{\text {rd }}$ solar cycle: 2005 and 2006
\lrcorner Modeling efforts
- Summary

Intiroduction: The Earth's radiation belts

Introduction: The electron rediation belts

- Trapped electrons interact also with:
- plasmaspheric cold electrons
- high atmosphere particles

Radiation belt dynamics: Magnetic storm

Reeves et al., GRL, 2003

- During storms particle loss and acceleration processes are enhanced. The evolution of the electron fluxes after the storm main phase depends on the balance between these processes.

Radiation belt dynamics: Solar Cycle

[^0]
Radiation belt dynamics: Solar Cycle

Li et al., GRL, 2006

Radiation belt dynamics: Correlation with solar wirncl Elcitivity

- Response to ICME and CIR driven storms

Kataoka and Miyoshi, Sp. Weather, 2006

Radiation belt dynamics; Correlation with solar wiricl elcitivity

- Key parameters during the recovery phase of magnetic storms
- high solar wind speed
- prolonged periods of southward fluctuating IMF
[lles et al., Ann. Geophys., 2002; Vassiliadis et al., JGR, 2005; Kataoka and Miyoshi, Sp. Weather, 2006; Tsurutani et al., JGR, 2006]

Ω

High speed CIR related storms are more effective in producing enhanced MeV electron fluxes

MeV electron flux enhancements are mostly observed during the declining phase of the solar cycle

The LANL geosynchronous setellites

- Circular 6.6 $\operatorname{Re}(\sim 36.000 \mathrm{~km})$ orbit at geographic equator.
- 24-hour period- satellites at fixed longitude.
- Data from eV to MeV electrons- whole spectrum of source.
- Continuous data acquisition from 1976.
- Currently, instruments on

Satellite	Operation Period
$1989-046$	$1989 / 09 / 22$ - today
$1990-095$	$1990 / 11 / 16-2005 / 11 / 09$
$1991-080$	$1991 / 11 / 27-2004 / 11 / 18$
$1994-084$	$1994 / 12 / 30$ - today
LANL-97A	$1997 / 07 / 16-$ today
LANL-01A	$2000 / 10 / 14$ - today
LANL-02A	$2002 / 01 / 16$ - today

5 satellites are in operation.

- Calibration techniques have been developed.

The GPS satellites

- Circular $4 \operatorname{Re}(\sim 20.000 \mathrm{~km})$ orbit with 12 hour period.
- 50 degrees inclination.
- $\mathrm{L} \geq 4$ - Equator at $\mathrm{L}=4.2$.
- Data for $100 \mathrm{keV}-10 \mathrm{MeV}$ electrons.
- At the present time there are 8 energetic particle instruments in space- a real constellation mission in the inner magnetosphere.

Satellite Operation Period

GPS nsll	$12 / 00$ - todaly
GPS ns54	$12 / 02$ - today
GPS ns56	$02 / 03$ - today
GPS ns60	$07 / 04$ - today
GPS ns61	$11 / 04$ - today
GPS ns59	$12 / 04$ - today
GPS ns53	$10 / 05$ - today
GPS ns58	$12 / 06$ - today

- Calibration and contamination techniques have been developed.

January 21, 2005

- Dst_min $=-105$ nT for 11 hours.
- Kp_max $=8, \mathrm{Kp}>6$ for more than 1 day.
- GEO 1.1-1.5 MeV fluxes at background level for $\sim 1 / 2$ day and then fast recovery.
- Low energy (75-100 keV) injections.
- High solar wind speed ($\sim 1000 \mathrm{~km} / \mathrm{h}$).

August 24, 2005

- Dst_min $=-216 \mathrm{nT}$
- Kp_max $=9$ -
- GPS fluxes drop and then increase fast.
- GEO 1.1-1.5 MeV fluxes at background level for ~1 day and then fast recovery.
- High solar wind speed ($\sim 800 \mathrm{~km} / \mathrm{h}$).
- Low energy (75-100 keV) injections.

December 14, 2006

- Intense geomagnetic storm.
- GPS fluxes increase by an order of magnitude.
- GEO 1.1-1.5 MeV fluxes at background level for $\sim 1 / 2$ day and then fast recovery.
- High solar wind speed ($\sim 900 \mathrm{~km} / \mathrm{h}$).
- Low energy (75-100 keV) injections.

Modeling efforts: storm simulations with a

 phiysiciel rsioclel

16-27 October 2001

> Salammbô + GEO boundary conditions: omnidirectional fluxes for 1 MeV

HEO 3 integral fluxes for $\mathrm{E}>1.5 \mathrm{MeV}$.

GPS ns41 integral fluxes for $\mathrm{E}>1.22 \mathrm{MeV}$.

Kp

Dst
(ICME related storm)

Modeling efforts: direct datita assimilation

Salammbô + GEO and GPS

Maget et al., 2007

Summary

We have access to a large data base of satellite measurements.

- We know that effects/dynamics can be very important/violent.
- We have the means to trace variation from the Sun to the Earth.
- We still need to understand how the system works, which processes are involved.
\lrcorner New data will be available in the future.
- Modeling and data assimilation techniques can help.

Thank you

Please contact me for any question, information: athina@lanl.gov

July 9, 2005

September 11, 2005

- Dst_min $=-123$ nT
- Kp_max $=8$ -
- GPS fluxes drop and then increase fast.
- GEO 1.1-1.5 MeV fluxes at background level for ~1 day and then fast recovery.
- High solar wind speed ($800 \mathrm{~km} / \mathrm{h}$).
- Low energy (75-100 keV) injections.

Statistical study of relativistic electron flux

 rise tifrees- Data from GPS n41 satellite for the period 2001-2006:
- Only equatorial fluxes: $L^{*}=4-4.5$.
(T01 storm was used)
- One energy channel: E=1.22 MeV.
- Time=0 at Dstmin.
- We have studied 41 events:
- 21 are CME related

[^0]: Li et al., GRL, 2006

