The influence of solar activity on the radiation belt relativistic electron dynamics

Athina Varotsou¹

Reiner Friedel¹, Sebastien Bourdarie², Geoff Reeves¹, Tom Cayton¹, Yue Chen¹, Josef Koller¹, Daniel Boscher², Vincent Maget², Ruth Skoug¹

Los Alamos National Laboratory/ISR-1, Los Alamos, NM, USA,
 ONERA/Department of Space Environment, Toulouse, France

Introduction

Radiation belt dynamics:

- Magnetic storm
- Solar cycle
- Correlation with solar wind activity
- Data base at the Los Alamos National Laboratory
- Solar extreme events of the 23rd solar cycle: 2005 and 2006
- Modeling efforts
- Summary

Introduction: The Earth's radiation belts

<u>The Radiation Belts</u>, charged particles, trapped by the terrestrial magnetic field.

- Trapped particle movements:
 gyration around the field line
 bounce between two mirror points
 - drift around Earth

Introduction: The electron radiation belts

> Trapped electrons interact also with:

- plasmaspheric cold electrons
- high atmosphere particles

low frequency is very effective.

Radiation belt dynamics: Magnetic storm

 During storms particle loss and acceleration processes are enhanced. The evolution of the electron fluxes after the storm main phase depends on the balance between these processes.

Radiation belt dynamics: Solar Cycle

Li et al., GRL, 2006

6

Radiation belt dynamics: Solar Cycle

Li et al., GRL, 2006

7

Radiation belt dynamics: Correlation with solar wind activity

Response to ICME and CIR driven storms

Kataoka and Miyoshi, Sp. Weather, 2006

Radiation belt dynamics: Correlation with solar wind activity

Key parameters during the recovery phase of magnetic storms

- high solar wind speed

prolonged periods of southward fluctuating IMF
 [*Iles et al.*, Ann. Geophys., 2002; *Vassiliadis et al.*, JGR, 2005; *Kataoka and Miyoshi*, Sp. Weather, 2006; *Tsurutani et al.*, JGR, 2006]

High speed CIR related storms are more effective in producing enhanced MeV electron fluxes

MeV electron flux enhancements are mostly observed during the declining phase of the solar cycle

The LANL geosynchronous satellites

- Circular 6.6 Re (~36.000 km) orbit at geographic equator.
- 24-hour period- satellites at fixed longitude.
- Data from eV to MeV electrons- whole spectrum of source.
- Continuous data acquisition from 1976.
- Currently, instruments on 5 satellites are in operation.
- Calibration techniques have been developed.

Satellite	Operation Period
1989-046	1989/09/22 - today
1990-095	1990/11/16 – 2005/11/09
1991-080	1991/11/27 – 2004/11/18
1994-084	1994/12/30 - today
LANL-97A	1997/07/16 - today
LANL-01A	2000/10/14 – today
LANL-02A	2002/01/16 - today

The GPS satellites

- Circular 4 Re (~20.000 km) orbit with 12 hour period.
- 50 degrees inclination.
- $L \ge 4 Equator at L=4.2$.
- Data for 100keV-10MeV electrons.
- At the present time there are 8 energetic particle instruments in space- a real constellation mission in the inner magnetosphere.
- Calibration and contamination techniques have been developed.

Satellite	Operation Period
GPS ns41	12/00 - today
GPS ns54	12/02 – today
GPS ns56	02/03 - today
GPS ns60	07/04 - today
GPS ns61	11/04 - today
GPS ns59	12/04 - today
GPS ns53	10/05 - today
GPS ns58	12/06 - today

January 21, 2005

- Dst_min = -105 nT for 11 hours.
 Kp_max = 8, Kp > 6 for more than 1 day.
- GEO 1.1-1.5 MeV fluxes at background level for ~1/2 day and then fast recovery.
- Low energy (75-100 keV) injections.
- High solar wind speed (~1000 km/h).

August 24, 2005

Dst_min = -216 nT
Kp_max = 9 -

• GPS fluxes drop and then increase fast.

 GEO 1.1-1.5 MeV fluxes at background level for ~1 day and then fast recovery.

- High solar wind speed (~800 km/h).
- Low energy (75-100 keV) injections.

December 14, 2006

 Intense geomagnetic storm.

- GPS fluxes increase by an order of magnitude.
- GEO 1.1-1.5 MeV fluxes at background level for ~1/2 day and then fast recovery.
- High solar wind speed (~900 km/h).
 - Low energy (75-100 keV) injections.

Modeling efforts: storm simulations with a physical model

Salammbô + GEO boundary conditions: omnidirectional fluxes for 1 MeV

HEO 3 integral fluxes for E >1.5 MeV.

GPS ns41 integral fluxes for E >1.22 MeV.

Kp

Dst

(ICME related storm)

Modeling efforts: direct data assimilation

Salammbô + GEO and GPS

Maget et al., 2007

Summary

- We have access to a large data base of satellite measurements.
- We know that effects/dynamics can be very important/violent.
- We have the means to trace variation from the Sun to the Earth.
- We still need to understand how the system works, which processes are involved.
- New data will be available in the future.
- Modeling and data assimilation techniques can help.

Please contact me for any question, information: athina@lanl.gov

July 9, 2005

September 11, 2005

Statistical study of relativistic electron flux rise times

