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Abstract. A study of the cosmic-ray intensity power spec-
trum using the Climax Neutron Monitor data in the frequency
range from 10−9 Hz to 10−7 Hz (which corresponds to peri-
odicities from 11 years to a few months) during the period
1953–1996, was carried out by means of the successive ap-
proximations method of analysis and was compared against
the power spectrum and the maximum entropy methods. The
contributions of the time evolution of several peaks to the
global one were obtained. Except for the well-known 11-year
and the 1-year variations, peaks at 7.7, 5.5, 2 and 1.7 years
are found. Several peaks with periods less than 10 months
have appeared in our analysis, while the occurrence of 5.1
months is obtained in all the examined solar cycles with
a strong signature in cycle 21. Transitions of these quasi-
periodicities are seen in power spectra plots. Some of them
can be attributed to the modulation of the cosmic ray inten-
sity by solar activity. Others are sporadic and have been pre-
viously attributed to the interplanetary magnetic field. The
results obtained support once again the argument regarding
the difference in the solar activity between odd and even so-
lar cycles.

Key words. Interplanetary physics (Cosmic rays, Interplan-
etary magnetic fields)

1 Introduction

The transport of cosmic rays (CR) from the edges of the
heliosphere to the vicinity of the Earth is greatly influ-
enced by the interplanetary magnetic field (IMF) structure.
On the other hand, the IMF status is determined by the
different solar activity manifestations. Thus, the study of
cosmic-ray variations provides an opportunity to derive the
three-dimensional configuration of the interplanetary mag-
netic field in the heliosphere in connection with the contribu-
tion of the off-ecliptic in situ measurements (Exarchos and
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Moussas, 1999; Heber and Marsden, 2001, etc.). Hence, a
detailed analysis of the time series of cosmic-ray intensity
observations at the Earth and particularly their spectral char-
acteristics in various frequency domains is important for de-
termining both the large- and small-scale behavior of mag-
netic fields in the heliosphere.

At the low frequency end of the spectrum the dominant
quasi-periodic variations in cosmic-ray intensity observed in
the time scales of 11 and 22 years (Venkatesan and Badrud-
din, 1990; Mavromichalaki et al., 1998) have been attributed
to solar activity and magnetic polarity reversal cycles, re-
spectively. At higher frequencies the diurnal variation (T =

1 day) is dominant and is caused by corotation of cosmic-ray
particles in the interplanetary magnetic field (Axford, 1965;
Mavromichalaki, 1989). Within these two extreme frequency
ranges a wide range of frequencies of cosmic-ray intensity
variations exists, although a clear, stable and selective peri-
odicity has not been established so far.

Several authors have studied the frequency distribution of
the cosmic-ray intensity fluctuations. The power spectral
density (PSD) analysis of the cosmic-ray intensity recorded
at ground level by polar and non-polar stations has indicated
in the frequency range 10−6

− 10−4 Hz (1 cycle/4 months
–1 cycle/3 hours) a predominant component of the type f2,
with indications of a change below 5× 10−7 Hz. Kudela
et al. (1991) noted that there are two distinct regions of
cosmic-ray periods with respect to the underlying physical
mechanisms, and that the barrier between them is located
around 20 months. The large-scale variations are caused
by the solar dynamics, whereas transient effects in the in-
terplanetary space cause the short-scale variations. The last
ones are consistent with the fact that the short time periods
have a different probability of occurrence in different epochs
(Xanthakis et al., 1989). Valdes-Galicia, Perez-Enriquez and
Otaola (1996) and Valdes-Galicia and Mendoza (1998) have
reported on a short-time variation of 1.68 year in the cosmic-
ray intensity observed at the Earth at neutron monitor ener-
gies (several GeV). They proposed that this cosmic-ray vari-
ation might appear as a consequence of phenomena rooted in
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the solar interior and could help in understanding the origin
of the solar magnetic cycle. Recently, Kudela et al. (2002)
presented wavelet transform results from daily averages of
the nucleonic intensity recorded by Neutron Monitors at four
different cut off rigidities over a period up to four solar cy-
cles and described the power spectral density temporal evo-
lution at three periodicities, namely 150–160 days, 1.3 year
and 1.7 year.

It is interesting to note that the established 1.7-year vari-
ation of cosmic-rays has also appeared at the top of flare-
producing regions for the period 1972–1989 (McIntosh,
1992), as well as in the long duration event (LDE)-type of
flares which precede the formation of coronal holes during
the 20th and 21st cycles (Antalovà, 1994; Mavromichalaki
et al., 2000).

In this work, a study of the cosmic-ray power spectral den-
sity in the frequency range from 10−9 to 10−7 Hz (1 cy-
cle/30 years – 1 cycle/4 months) is presented. The cosmic-
ray intensity data were obtained from Climax Neutron Mon-
itor station for the period 1953–1996, i.e. four solar cycles
(19–22). Three independent spectral methods have been em-
ployed in the analysis of this time series in order to detect pe-
riodicities. The behavior of spectral characteristics in differ-
ent ranges of periodicities, covering months to several years
and the possible solar origin of the presented peaks in the
calculated spectra are discussed.

2 Data analysis

The pressure-corrected monthly averages of the cosmic-ray
intensity recorded by the Climax Neutron Monitor Station
(cut off rigidity 2.96 GV) for the time interval 1953–1996 are
used. The advantage is that this data set is obtained from the
same station and so there is not a different rigidity response
to the cosmic-ray flux. So, the cosmic ray intensity variations
will be always the same quantitatively (Moraal, 1976).

The integrated cosmic ray intensity over the period 1953–
1996 is shown in the upper panel of Fig. 1. The values
are normalized with respect to the maximum intensity level
reached in May 1965 corresponding to zero and with respect
to the minimum intensity level reached in June 1991 taken
to be equal to 1.00. Using this technique the cosmic ray in-
tensity data are inverted without consequences for our analy-
sis. This is a common normalization scheme for cosmic ray
time series, in order to have a direct agreement with the solar
activity cycles, since the cosmic-ray intensity variations are
anti-corrrelated with solar activity (Forbush, 1958).

In order to investigate variations in the constructed time
series we have used the following spectral techniques:

(a) Method of successive approximations (SA) – time-
phase domain;

(b) Power spectral analysis (PSA) according to the Black-
man and Tuckey approximation frequency domain and,

(c) Maximum entropy method (MEM) of analysis.

 

 

 
Fig. 1. Monthly normalized cosmic-ray intensity values obtained
from the Climax Neutron Monitor Station over the period 1953-
1996 are presented in the upper panel. By applying the SA method
on this time-series the quasi-periods of about 11, 5.5, 2, 1.7, 1-years
and 8, 6, 4 and 3 months are obtained. The start-end sine segments
of each quasi-sine wave are presented in the lower panel. The spec-
trum obtained from the SA application to these data, analogous to
the wavelet transform method, is given in the middle panel. The
gray scale corresponds to the amplitude (ai ) distribution varying
from −0.7 (white color) to 1.0 (black color).

2.1 Successive approximations method

By applying the technique of de-trending time series by
trigonometric series we have investigated the cosmic-ray in-
tensity variations in a wide range of periodicities from three
months to eleven years. According to this technique of suc-
cessive approximations (SA) the amplitude and the position
of each variation are computed, expressing them analytically.
This method was introduced by Xanthakis et al. (1989), in
order to study cosmic-ray time series from various Neutron
Monitor stations. Several periodical sinusoidal waves are ap-
plied on the observed time series to reproduce them. The am-
plitude and phase of these waves are obtained by successive
fittings on the data set. It can also be used for non-continuous
functions. The software for the application of this method to
the time series has been developed by Liritzis et al. (1999)
and was used in the present study. Ifϕi andϕi+1 denote the
start and the end time of each sinusoidal wave to be fitted,
in each step of the procedure, the calculated values of the
cosmic-ray intensity (Ical) is given by the equation:

Ical = ao +

∑
ai sin((π/Ti)(t − ϕi)), (1)
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Table 1. Synoptic results of the cosmic-ray intensity spectral analysis for the time interval 1953–1996

Cosmic Ray Periodicities (1953–1996)

Power spectrum Successive Xanthakis’s
analysis Approximations Method Maximum Entropy

(Blackman-Tuckey) (91%) (1964–1985) Analysis
(99.5%) (99%) F = 250

11.25 y
10.80 y 10.50 y 10.41 y 10.40 y

9.20 y

7.20 y 8.41 y 7.70 y
5.40 y 5.80 y 5.50 y 5.34 y

4.20 y 3.97 y

1.90 y 2.00 y 1.90 y

1.70 y 1.70 y 1.70 y

1.00 y 1.00 y 1.00 y 1.00 y

10.00 m

8.70 m 9.10 m

8.00 m 8.00 m 8.40 m

6.60 m 6.00 m 6.00 m 7.10 m

5.10 m 5.20 m

4.00 m 4.50 m

4.00 m

2.80 m 3.00 m 3.00 m

where

ϕi < t < ϕi+1

a0 is the constant shift of the curve,
ai is the amplitude of the i-sinusoidal curve and,
Ti is theith periodicity.

Successive results of this technique applied on the cosmic-
ray time series for the time interval 1953–1996 are illustrated
in the Fig. 2. The computed values are subtracted from the
observed ones and the time series of residuals has been fit-
ted by a similar relation, in order to identify medium quasi-
periods and produce new residuals. The last one has been
fitted by an analogous relation to identify the smaller quasi-
periods and the final residuals. The last calculated time se-
ries (Ical) summarizes all the previous results. The standard
deviation, as well as the accuracy of our computations, is
checked step-by-step, insuring the validity of our results, and
the degrees of freedom suggest that the parameters used in
these expressions would be less than the half of the num-
ber of measurements. From our analysis the quasi-periods
about 11, 5–4, 2, 1.7, 1 years and 8, 6, 4 and 3 months are
obtained (Table 1). The standard deviation is equal to 0.27
and the corresponding accuracy between observed and calcu-
lated values is 91% with 126 degrees of freedom. The start-
end sine segments of each quasi-sine wave fitting, as derived
from the successive approximations method (see Eq. 1) is
presented in the lower panel of Fig. 1. The amplitudesai , for
the corresponding fitting components are additionally given

in a gray scale in the middle panel of the same figure. This
technique of analysis is a power spectrum analogous to that
one of the wavelet transform method. Long- and short-term
quasi-periodicities shown in the lower panel of Fig. 1 are sep-
arated by a limit of about 1.7 years (Xanthakis et al., 1989;
Kudela et al., 1991). It is clear that the long-term period-
icities have appeared with higher amplitude than that of the
short-term ones (see middle panel of Fig. 1).

The same technique of analysis during each solar cycle
separately gives some more interesting results shown in Ta-
ble 2. Short-term periodicities (< 2 years) appear sporadi-
cally and with small amplitude during the four cycles. Xan-
thakis et al. (1989) has noted that these are periods with a
different probability of appearance in different epochs. How-
ever there are two distinct time intervals in the declining
phase of the cycles 19 and 22, where the periods of 3, 4,
6, 8 months and 1 year are not appearing (lower panel of
Fig. 1). Obtained results seem to be related to the even and
odd cycles activity (Mavromichalaki et al., 1997; Mendoza
et al., 1999), The 11-year periodicity appears as a peak at
10.5 years for cycles 19 and 21, as 11.25 years for cycle 20
and 9.20 years for cycle 22. The periodicity of 5.8 years is
obtained in cycles 19 and 21, with 4.2 years in cycles 20 and
22. Possibly these results are connected with the 22-year so-
lar cycle and the magnetic polarity of the Sun. The periods of
4 m and 6 m correspond to the well-known periodicity of 154
d, indicated in many solar parameters (Rieger et al., 1984).
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Fig. 2. Time evolution of the cosmic-ray intensity according to the
Successive Approximations technique. In the upper two panels the
time-series produced by the analytical expressions given from the
Eq. (1) compared with the observed ones (continuous line) are pre-
sented for the first and final approximation, respectively). The final
residuals between observed and calculated cosmic-ray values are
given in the lower panel with an accuracy 91%.

As it is obvious from Fig. 1 (lower panel) the 1-year period-
icity caused by the Earth’s rotation is obtained in cycles 20
and 21 and sporadically in cycles 19 and 22. Moreover the
period of 1.7 years (20 m) has appeared in cycles 19 (except
of the maximum phase) and 22, as well as in the declining
mode of cycle 21 and only around the maximum of cycle 20.
It is extended to 2 years in the ascending mode of cycle 19.
It is noted that the quasi-periods of 4 m, 6 m and 1.7 years are
the most predominant peaks in all the cycles. This last point
is in agreement with the recent results of Kudela et al. (2002),
using the wavelet transform technique of analysis.
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Fig. 3. Power density distribution derived from the monthly mean of
the cosmic-ray intensity as a function of frequency 10−9–10−6 Hz
is presented for the interval 1953–1996. The power density is ex-
pressed in percent2/Hz. Peaks with a significant level greater than
99.5% are indicated.

2.2 Power spectrum

In order to confirm possible systematic quasi-periodic vari-
ations obtained by the method of Successive Approxima-
tions, a Blackman and Tuckey (1959) power spectrum anal-
ysis (PSA) was carried out. The obtained power (variance)
spectrum was derived from Fourrier transforming the auto-
correlation functions of the time series, which were truncated
in various lags. If the spectrum represents a random sample
from a normal population, the sample spectrum estimates at a
given frequency are distributed about the corresponding pop-
ulation, divided by the equivalent degrees of freedom. The
maximum lag may not be over the number of values divided
by the number 3 (Blackman and Tuckey, 1959).

The power spectrum method is based on the estimation
of the significant periods over several confidence levels ac-
cording to an x2 distribution. For this purpose the spectral
estimates and the red noise curve, corresponding to the back-
ground level, is computed for every frequency. The confi-
dence levels are computed by multiplying the red noise curve
values by the confidence coefficients which denote that a nor-
mally distributed statistic can be found between the limits
±1.96σ , ±2.58σ , etc., (σ is the standard deviation) for the
confidence levels of 95%, 99%, etc., respectively. If one peak
(i.e. spectral estimates value) is larger than the correspond-
ing confidence level value, it is considered as a significant
peak and gives a significant frequency or period for this con-
fidence level.

This method applied to the monthly mean averages of
cosmic-ray intensity over the interval 1953–1996 is pre-
sented in Fig. 3. Peaks with a confidence level greater than
or equal to 99.5% are present at 130, 86.7, 65, 20, 12.4, 8.7,
6.6, 5.1 and 2.8 months. A network of periodicities rang-
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ing from 130 to 65 months with a significance level>99.5%
has appeared in which the periodicities of 130 and 86.7 m
are more distinguished, while the peak of 65 m is not easily
well-recognized. It is noticeable that there is a change in the
spectrum slope below the period of 20 months, which is also
reported by Kudela et al. (1991).

One of the main features of this spectrum is a 5.1 m vari-
ation that seems to be the most remarkable peak after that of
the 130 months (11 years). The contribution of the time evo-
lution of the quasi-periodic cosmic-ray signal of 5.1m (154d)
to the cosmic-ray intensity profile has also been noted by
Kudela et al. (2002). The Earth’s rotation period (1 year)
causes a seasonal cosmic-ray variation (Forbush, 1958).

Going a step further we calculated the PSD of cosmic ray
intensity during each solar cycle separately. The period of
20 months has appeared in all the cycles with a significant
level >95%, except for cycle 19. This peak is obtained with
a significant level of 99% in cycle 22 (Fig. 4). The peak of
5.1 months is present in all cycles with a strong appearance
in cycle 21. Valdes-Galicia et al. (1996) and Mavromicha-
laki et al. (2002) have already reported that the cosmic ray
fluctuation of 5.1 m has appeared in cosmic-ray intensity at
the maximum phase only of cycle 21 and not of cycle 20,
while for earlier (and later) cycles and periods the evidence
is contradictory. The evidence for this periodicity (154 days)
in flare-related data is convincing for the interval 1978–1983
of the cycle 21. It seems that this fluctuation observed in
cycle 21 is a deep-seated characteristic of solar activity and
not a random transient effect and its amplitude varies greatly
from cycle to cycle. El-Borie and Al-Thoyaid (2002) noticed
that the cosmic-ray power spectra of solar maxima for the
cycles 20 and 22 are much harder than the ones of cycle 21
in the frequency range 10−8–10−6 Hz. At lower frequencies
they remarked that the cosmic-ray intensity power spectra
exhibited a complex structure for different epochs. Kudela
et al. (1991) showed that the power spectrum at periodici-
ties corresponding to several months (3–6 months) appear to
exhibit a dependence on the 22-year periodicity caused by
the recurrence of reversal of solar magnetic fields. A narrow
peak at 2.1 m is also found in all cycles (Fig. 4), but it is not
accepted as the data resolution is of one month only. Valdes-
Galicia et al. (1999) have also reported this variation around
60 to 66 days for the period 1992–1998.

2.3 Maximum entropy

Given our primary interest in investigating periodicities in
the constructed time series, especially in the range of 1–2
years and the search for its possible solar origins, an ad-
ditional technique of time series analysis called the maxi-
mum entropy method (MEM) has been used to calculate the
PSD of our data presented in the upper panel of Fig. 1. This
method is better than other spectral techniques to resolve dif-
ferent frequency peaks (Ulryich and Bishop, 1975; Kudela et
al., 1991; Valdes-Galicia et al., 1996). Algorithms for per-
forming the MEM analysis were based on the algorithm de-
veloped by Burg (1967). The duality between the maximum
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Fig. 4. The cosmic-ray power spectrum according to Blackman and
Tuckey (1959) method for each solar cycle (19–22) is presented.
The power density is expressed in percent2/Hz. Peaks with a signif-
icant level greater than 95% are indicated.

entropy method and the autoregressive representation of the
data allows for the application of autoregressive (AR) analy-
sis to obviate some shortcomings of the MEM method. The
method exhibits higher spectral resolution than other spectral
estimators, yet the issue is to define the best filter length in
order to avoid oversampling (too long filter) and undersam-
pling (too short filter) the underlying spectrum of the data.
The expansion coefficients for the maximum entropy spec-



1686 H. Mavromichalaki et al.: Low- and high-frequency spectral behavior of cosmic-ray intensity

 

 

 
 
 
 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  5 
 
 

MEM 
Climax 1953-1996

0.0001

0.001

0.01

0.1

0.25 0.55 0.85 1.15 1.45 1.75 2.05 2.35

Frequency (10-8Hz)

Sp
ec

tr
al

 D
en

si
ty

 [(
%

)2 /H
z]

20,3 m

16,6 

125 m

92,6 64,1 m

47,6 37,7 

32,5 m 26,8 m

22,8 m

Fig. 5. Maximum entropy analysis of the Climax Neutron Monitor
station time series for the interval 1953–1996. The frequency range
(0.25–2.35) 10−8 Hz is presented.

tral estimator are calculated by minimizing, in the statistical
mean square sense, the discrepancy between the data and the
reconstructed AR model of the data. Our assumption is that
this procedure guarantees that the observed spectral peaks
are truly representative of the process and do not represent
noisy peaks introduced by the estimating procedure. This
assumption is verified by the overall agreement between the
different spectral estimators used for this work. The optimum
selection of the length of the prediction error filter remains an
open issue. Objective methods of filter choice do exist, but
the lack of agreement on which is the best shows how much
one’s choice is dependent on the data analysed. Here, we
make use of three suggestions about the best choice ofF .
In our experience, the best orderF is between Berryman’s
criterionF = 2N/ ln 2N andN/2, whereN is the number
of data (Berryman, 1978; Liritzis et al., 1999). However,
various filter lengths were applied and the records were anal-
ysed in subsets, as well. This is also a test of stationarity,
i.e. a study for possible time variation of the spectral content
in the analyzed time series as a function of the filter length.
This test was further graphically reinforced by the successive
approximations method.

For a chosen filter lengthF = 250, peaks at 10.40,
7.70, 5.34–3.97, 1.90–1.70, 1.00 years and 10.00, 9.10, 8.40
months and some other smaller periods are present in this
analysis (Table 1). It is noteworthy the change in the slope
of PSD of the cosmic-ray intensity at levels around 22.8
months, which corresponds to the 1.9-year peak found by
other authors (Kudela et al., 2002). It is well illustrated in
Fig. 5 the peaks only in the frequency range (0.25–2.35)
10−8 Hz.

Synoptic results of the simultaneous application of these
three different spectral methods of analysis for the time in-
terval 1953–1996 are given in Table 1, together with previ-

Table 2. Quasi-periodic terms of cosmic-ray intensity for the solar
cycles 19–22 computed by Successive Approximations (SA) and
Power spectral (PSA) methods of analysis

Cosmic Ray Periodicities per Solar Cycle

PSA (95%)(in months) SA (in months)

19th 100, 50, 126, 69, 23, 20,
12.5, 7.7, 5.1, 3.8, 3.1, 2.4 12, 8, 6, 4, 3

20th 100, 20, 135, 50, 20,
12.5, 7.7, 5.5, 4.3, 3.1, 2.9 12, 8, 6, 4, 3

21st 100, 20, 126, 71, 20,
12.5, 7.1, 5, 3.1, 2.6 12, 8, 6, 4, 3

22nd 20, 110, 52, 23, 20,
10, 7.1, 5, 3.4, 2.7 12, 8, 6, 4, 3

ous results of Xanthakis et al. (1989) for the time interval
1964–1985, using the method of successive approximations
graphically. It is interesting to note the agreement of all re-
sults obtained by different methods inside the error limits.
The error in Xanthakis’s method (1989) using semiannual
cosmic-ray values is± 6 months.

Moreover, we can see from Table 2 that short-term period-
icities < 20 months are present in all solar cycles examined
here using both PSA and SA methods. The known period of
20 months is also visable in all cycles. An exception is cycle
19 in PSA method. The 11-year period seems to be stable
as 10.5 years in odd cycles 19 and 21, while it is varying
in the other two even cycles (11.25 and 9.20 years, respec-
tively). The second harmonic of this variation is appearing
with larger amplitude in odd cycles (69 and 71 m) than in the
even cycles (50 and 52 m). In the PSA method the first two
periods of 100 and 50 m, although they are given as signif-
icant, they cannot be accepted due to the limitations of the
specific technique.

3 Discussion

From the above analysis it is evident that, in the cosmic-ray
intensity time series at the Neutron Monitor energies over
four solar cycles, two groups of fluctuations are appearing:
the long-term peaks and the short-term peaks with a limit
of the period of 20 months (1.70 year) between them. This
transit limit was also reported by Kudela et al. (1991), in an
analysis of cosmic-ray time series from Calgary and Deep
River stations for the time span 1965–1984. This fact in-
dicates that the large-scale cosmic-ray variations are caused
from different physical mechanisms from those of short-scale
ones. The first ones are caused from possible oscillations of
the heliospheric cavity to the heliospheric limit with a period
of about 2 years. On the other hand, the peaks in the spectra
with periods smaller than two years are attributed to transient
variations during different epochs.
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The large-scale variations are distinguished into three
groups of peaks at 10.5, 7.5 and 5.5 years. The first one is
the well-known 11-year variation, known as the sunspot vari-
ation. It is suggested that the solar cycle length is 11.8 years,
but it is triggered every 10.45 years. Attolini et al. (1987)
reported that the coherency between the cosmic rays and the
sunspot numbers has appeared to be higher for the peaks of
the higher harmonics of the fundamental periodicity of 10.67
years. It is very important to distinguish cosmic-ray vari-
ations that are strictly related to the sunspot activity from
cosmic-ray variations that are related to other manifestations
of solar activity, since in the latter case the 11-year period
might have appeared with a different spectrum in the higher
harmonics.

The period of 7.5 years seems to be related with the 22-
year cycle and consequently, with the polarity of the solar
magnetic field, whereas the period of 5.5 years is correlated
with the 11-year cycle. Significant fluctuations at around 5.5
years presented in most of our PSD estimates were also re-
ported in studies of other solar phenomena. Although these
peaks may be harmonics of the fundamental sunspot cycle,
they deserve attention since their statistical significance and
their correlation with other solar and interplanetary phenom-
ena provide means to envisage the physical processes by
which the Sun influences the heliosphere. The existence of
the 5.5-year periodicity in sunspot number shows that al-
though it is rather a real periodicity, it is indeed due to the
enhanced power of the second harmonic which arises from
the asymmetric form of the solar cycle (Mursula and Zieger,
2000).

The 2-year variation was identified along with the annual
and other variations in the neutron monitor data a long time
ago (Kolomeets et al., 1973). Later on, such variations at-
tracted the attention of many researchers who investigated
the effect in the stratospheric sounding data and showed iso-
topic character (Charakhchyan et al., 1979). More recently
the biennial variations have been found in the low-energy
cosmic ray intensity in space (Charakhchyan, 1986). The
nature of the highly correlated solar and geomagnetic oscil-
lations is not yet understood; there is the possibility that the
2-year variations in the cosmic-ray intensity are connected to
the 2-year variation in solar activity via geomagnetic effect.
This last point can be confirmed by the fact that the variation
seems to change with the asymptotic longitude, as reported
by Charakhchyan et al. (1979). In this case the dependence
of the polarity of the interplanetary medium with respect to
the geomagnetic field can also play an important role. This
variation in cosmic rays is observed to be variable both in
amplitude and phase, and not correlated with sunspot cyclic
variations, but it seems to depend on the magnetic polarity of
the interplanetary medium.

Of particular importance is the peak at around 1.7–
1.9 years, recently found in cosmic-ray intensity fluctuations,
and the peak at around 1 year, also identified in coronal hole
magnetic flux variations (Maravilla et al., 2001; Kudela et al.,
2002). This∼1.7-year periodicity was also found in cosmic
rays by Valdes-Galicia, Perez-Enriquez and Otaola (1996).

It was examined in connection with large-scale photospheric
motions and identified in the occurrence of the sudden storm
enhancements (Valdes-Galicia and Mendoza, 1998). Earlier,
this periodicity was reported for the coronal-hole areas in cy-
cle 21 (McIntosh et al., 1992). Since the solar modulation
is governed by the solar wind structures with the frozen-in
IMF, similarities between the cosmic-ray behavior and the
time evolution of solar wind structures are expected. So, the
peak of 1.7 years observed in cosmic-ray data, as well as in
coronal-hole area and not in sunspot number, seems to be of
solar origin, as was shown by Maravilla et al. (2001).

The quasi-periodicity of 5.1 m (∼154 days) checked here
with NM data is not stable, appearing usually after the so-
lar maxima. From our analysis it is evident that it is most
prominent in the 21st solar cycle, which was characterized
by strong flare activity (Fig. 4). This variation has been re-
ported in flare-related data by many authors in different time
intervals (Rieger et al., 1984; Bai and Cliver, 1990; Verma et
al., 1992, etc.). Wolff (1992) attributed this periodic behav-
ior to periodic sources located in the solar interior caused by
global oscillation modes. Bai and Cliver (1990) underlined
that there are cases where a periodicity is seen to disappear
for a long interval and then to appear at the same phase or
180◦ out of phase. An example of this effect is the 155-day
periodicity. Recently, Kudela et al. (2002) presented wavelet
analysis results from the time series of the nucleonic inten-
sity recorded by Neutron Monitors at four different cut off
rigidities and described the PSD temporal evolution at the
periodicities of 150–160 days,∼1.3 years and∼1.7 years.
They indicated that the quasi-periodicity of about 150 days
is not stable and it ranges from 140 days to more than 200
days, appearing usually just after the solar maxima. Rybak
et al. (2000), as well as Antalovà et al. (2000), discussed
the intermittent character of the 150-day solar periodicity in
the 20, 21 and 22 cycles for solar soft X-ray parameters,
while the power of the 155-day periodicity of solar SXR
data is remarkably better during the 21st than the 20th cy-
cle. Cane, Richarchon and Rosenninge (1998) found that the
IMF power average during the years 1978–1982 was larger
than that in 1968–1972 for the 150-day long periodicity.

Short-term periodicities have been related to enhanced
flare activity in certain longitude bands by Bai and Sturrock
(1991). Pap, Tobiska and Bouwer et al. (1990) also reported
that 51-day and 150–157 day periods are more pronounced in
those solar data which are related to a strong magnetic field.
Joshi (1999) reported that the 170-day periodicity of cosmic
rays was interpreted in the base of six solar rotations (152 =
28.3 day periodicity of 10.7 cm solar radio flux) and may be
connected to the instability of the solar core. Mavromicha-
laki and Petropoulos (1997) in a study of the cosmic ray dif-
fusion coefficient gave evidence that the short-term cosmic-
ray variations could be caused by transient effects in the in-
terplanetary space.

It is noticeable that obtained results support the claimed
difference in the solar activity evolution during odd and even
solar cycles. For example, the 11-year variation is 10.5 years
in the odd cycles, while it is longer in the even cycle 20 and
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shorter in cycle 22. The periodicity of 5.8 years is obtained in
cycles 19 and 21, with 4.2 years in cycles 20 and 22. More-
over, the contribution of 5.1 m is very strong in cycle 21,
while the peak of 20 m is stronger in cycle 22 than in the
others solar cycles. Recently, Mavromichalaki et al. (2002)
reported that this last periodicity is present in the maximum
years of the odd cycle 21 and not in cycle 22 of cosmic-
ray intensity and flare index time series. This is in agree-
ment with the results of Valdes-Galicia and Mendoza (1998),
where they reported that the 1.68-year variation seems to be
stronger in the odd cycles when the cosmic rays are guided
to penetrate the heliosphere through the current sheet by the
drift caused by the interplanetary magnetic field. After the
magnetic field reversal of the Sun, the cosmic rays penetrate
through the current sheet into the heliosphere during the even
cycle when their predominant drift via polar latitudes is sug-
gested (e.g. Jokipii, 1998). El-Borie and Al-Thoyaibd (2002)
showed that there are significant differences in the individual
spectra of solar maxima for different cycles. The spectrum
for even solar maximum years is higher and much harder
than for the odd cycles. All these results, together, may be
an indication that different spectral cosmic ray variations in
successive solar cycles reveal another fundamental difference
between even and odd solar activity cycles.

4 Conclusions

Investigation of high- and low-frequency periodicities in
cosmic-ray intensity as recorded by the Climax Neutron
Monitor station was performed, including their time evolu-
tion. The integral PSD for the interval 1953–1996 gave a
power law behavior in frequency with the exponent 1.82 ±

0.01, in agreement with previous findings. This slope seems
to change below the limit of 5× 10−7 Hz, in agreement with
the results of Kudela et al. (1991). The method of successive
approximations applied to this time series indicate, that there
are stable periodicities in cosmic-ray intensity in the whole
range between three months and 11 years, as examined here.

Occurrence of different peaks at 11, 7.5, 5.5, 2, 1.7 and
1 years, as well as at 8, 6, 4 and 3 months (Table 1), were
obtained during the time interval 1953–1996. The quasi-
periodicities that are most clearly in the integral power spec-
tra over all these years are those of 1.7 year and 5.1 m. The
contribution of 5.1 m is stronger during solar cycle 21. If al-
ternating periodicities are a systematic feature of the consec-
utive cycles, it implies the relevance of the identified differ-
ences between even and odd solar activity cycles (Storini et
al., 1995; Mavromichalaki et al., 1998; Bazilevskaya et al.,
2000, etc.). However, more work is needed on this subject
relating cosmic ray variability directly to the solar period-
icities, taking into account the polarity reversal of the polar
magnetic field. Our analysis indicates that the measurements
of CR power spectra as a means of studying the interplane-
tary medium and the CR transport mechanisms is very pow-
erful.

Finally, to clarify the casual relations between solar mod-
ulation effects and cosmic-ray flux on a long-term basis, it
could be useful to investigate the temporal variability of high-
energy particles near the Earth, as well as available sets of
cosmic ray records at a larger distance simultaneously, to-
gether with the solar wind and IMF data sets at different
points within the heliosphere, using the same methods. The
cosmic-ray intensity variations measured by neutron moni-
tors is a mirror image of the magnitude of the IMF, as Cane
et al. (1999) and Wang et al. (2000) have showed recently.
One method to be applied, except for the wavelet transform
method, should be that of the successive approximations used
here for the Neutron Monitor time series. This gives the op-
portunity to define the amplitude and the phase of the ob-
served fluctuations, as well as the analytical expression that
reproduces the observed time series.
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