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Statistical analysis of solar proton events
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Abstract. A new catalogue of 253 solar proton events the interplanetary shock have been elaborated during the pe-
(SPEs) with energy>=10MeV and peak intensity>10 riod between 1960 and 1980 (Dorman and Miroschnichenko
protons/cm.s.sr (pfu) at the Earth’s orbit for three complete 1968; Miroshnichenko, 2001). Pitch angle scattering plays
11-year solar cycles (1970-2002) is given. A statistical anal-an important role in the particle propagation. Transport in-
ysis of this data set of SPEs and their associated flares thaudes the diffusion parallel and perpendicular to the mean
occurred during this time period is presented. It is outlinedmagnetic field direction, focusing, drift motion under large-
that 231 of these proton events are flare related and only 28cale field changes and sometimes “scatter-free" propaga-
of them are not associated with Ha flares. It is also notewortion. Acceleration can take place at a shock front with the
thy that 42 of these events are registered as Ground Levdielp of additional scattering centers moving relative to the
Enhancements (GLES) in neutron monitors. The longitudinalshock (McCracken et al., 1962; Roelof, 1969; Richter et al.,
distribution of the associated flares shows that a great numbet981; Cliver et al., 1982; Valdes-Galicia et al., 1984; Ma-
of these events are connected with west flares. This analysison et al., 1984; Forman et al., 1986; Reames D. V., 1999;
enables one to understand the long-term dependence of th&ibberenz et al., 1992).

SPEs and the related flare characteristics on the solar cycle

which are useful for space weather prediction. For first time Van Hollebeke et al. (1975) using the data

from the Goddard cosmic ray experiments on IMP-IV and -
Key words. Interplanetary physics (Energetic particles; V, applied the procedure for identifying the associated flare
Flare and stream dynamics; Interplanetary shocks) of a solar proton enhancement and summarized the proper-
ties of 125 events in which the initiating flare location could
be defined. The existence of a “preferable connection re-
1 Introduction gion” within 20° W to 80> W has been found. It was clarified
that the maximum of the fluxes in each energy interval (en-
Solar energetic particles, high-energy neutral emissionsergy spectrum) and high-energy threshold of the spectrum
coronal mass ejections (CMEs) and shock waves associateate the most important characteristics of solar energetic par-
with fast CMEs determine the space weather at the Earth'sicle events. Cane et al. (1988) rested upon numerous original
orbit. The most powerful sources of solar energetic particleworks and formulated that the intensity-time profiles of solar
fluxes observed at 1 AU are flares and interplanetary shoclenergetic particles display an organization with respect to he-
waves. The dynamic of energetic particles within the helio- liolongitudes of parent flares, and the existing interplanetary
sphere involves the problems of acceleration, particles escaghocks are the controlling agent. They explained the time
ing and spreading near the Sun and propagation through thieehavior of solar energetic particles as a function of the lon-
interplanetary medium. Actually, all of the above processesgitude within the model framework for the large-scale struc-
display a high degree of variability that results in the greatture of interplanetary shocks, which are probably driven by
diversity of the time behavior of the particle fluxes measuredthe piston of CME.
atl AuU.

acceleration during the fiares. The basic patterns of IoarEascaping. One approach to understand the variability of the

ticle interplanetary transport and additional acceleration ON,Jlar energetic particles fluxes measured at 1 AU is a statisti-
Correspondence tdd. Mavromichalaki cal study of their association with solar flares, with the shock

(emavromi@cc.uoa.gr) wave and CME propagation on a large number of events.
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Fig. 1. Typical examples of large solar proton events which occurred on 24 September 2001, 25 July 1989 and during the time interval from
18 October to 31 October 1989, respectively.
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According to the National Oceanic and Atmospheric Ad- The “associated flare” of this event occurred with importance
ministration of the Solar Environment Center (NOAA/SEC) 2B/X2 and was located at S16 E23, while the soft X-rays du-
definition, a “solar proton event” (SPE) is the solar energeticration was about 97 minutes. A coronal mass ejection and
particles’ enhancement in which proton flux with energy a shock wave were associated with this flare. When the in-
Ep>10 MeV is greater or equal to 10 part/€m.sr (10pfu)  terplanetary disturbance reached the Earth, a strong geomag-
up to the background level near 1AU. The onset time of a pro-netic storm and a big Forbush decrease started on 25 Septem-
ton event is defined by the first three consecutive 5min av-ber at 20:25 UT. The peak values of 10 MeV proton flux was
erage data points with fluxes greater than or equal to 10 pfuachieved at about 08:00-09:00 UT on 26 September, simul-
The end of the event is the last time when the flux was greatetaneously with the minimum value of cosmic ray intensity
than or equal to 10 pfu. This definition allows for multiple recorded at NM stations. Time profile of the SPE exhibits
proton enhancements to be considered as one proton eventtwo strongly pronounced increases; nevertheless, according

Several catalogues of SPEs have been created and thdp the NOAA SEC definition, proton enhancement is consid-
data are analyzed within the framework of particle acceler-ered as “one” event, and maximum flux values (Tmax and
ation in different sources at or near the Sun (Van Hollebekelmax) have been attributed to fluxes registered simultane-
et al., 1974; Svestka and Simon, 1975; Basilevskaya et al.gusly with the shock.

1983; 1986; Sladkova et al., 1990; 1998; Cliver et al., 1991; An exceptional event of our catalogue is the event of 25
Stolpovsky et al., 1988; Goswami et al., 1988; Shea andluly 1989, presented in Fig. 1b. In spite of the fact that
Smart, 1990; Feynmann et al., 1993; Gabriel and Feynmanrthe peak flux for Ep-10 MeV protons was only three times

1996; King 1984; Crosby et al., 1993; Mendoza et al., 1997;greater than the threshold intensity (10 pfu), it was recorded
Gerontidou et al., 2002) as ground level enhancement at the Earth. The time pro-

This work presents a new updated catalogue of solar eneffile of 10 MeV protons was very sharp with a time rise
getic particles events for the time interval 1970-2002. Sta-of about 180 minutes. An associated flare with importance
tistical properties of SPEs and their association with neu-X2.6/2N was located at N25W84 and had a total duration of
tron monitor enhancements as well as some properties of thd9 minutes.
solar flares, identified as “associated”, are discussed. This The widely known time interval from 18 October to 31
catalogue is mainly based on the catalogue of solar proOctober 1989 is the period with the highest proton fluxes
ton events edited by Logachev at the Institute of Nuclearover the history of space explorations. The spectacular time
Physics of Moscow University (Basilevskaya et al., 1983; profiles of the protons are presented in Fig. 1c. A power-
1986; Sladkova et al., 1990; 1998) that covers the time spafful flare at 19 October with importance 3B/X13 was the first
1970-1996. In these issues the particle flux time profiles aréne in the series of long duration SXR flares accompanied by
taken from the Meteor satellite observations (Fedorov, Insti-SPE. The maximum flux was registered simultaneously with
tute of Applied Geophysics), GOES, IMP and balloon (Lebe-sudden storm commencement (SSC) and Forbush decrease
dev Physical Institute of Russian Academy of Sciences) meaat 09:20 UT on 20 October. Three GLEs were recorded at
surements and Neutron Monitor Network (NMN), as well. heutron monitors on 19, 22 and 24 October. The GLEs on
The intensity-time profiles of proton fluxes in several energy 19 and 24 October, having at the South Pole neutron monitor
bands, the integral proton energy spectrum, as well as inmagnitudes greater than of 90% and 200%, respectively, are
formation on the possible SPE sources for each event, can bamong the biggest GLEs of the solar cycles 20-23.
found in these issues. Listing of these events was extended up In this study the associated sources of each solar proton
to now using the issues from NOAA SEC (2002). The NMN event with peak flux>10 pfu were found. Contrary to the
database of IZMIRAN (http://www.izmiran.rssi.ru) was also NOAA/SEC definition, we tried to find and to distinguish a
used for identification of the ground level enhancementsdiffusion maximum of each event. Of course, there are events
(GLEs). without any association with flares and when an SPE is cre-

ated by far eastern flares, the associated flare identification is

poor. The time profile of these events exhibits only one max-
2 Catalogue description imum that coincided in time with the sudden commencement

occurence. In this case this is adopted as the maximum value
Protons can be accelerated to energies more than 10 Me¥f the event. A list of 253 solar proton events with energy
during the flare development or near the shock front asso=-10MeV and peak intensity-10 pfu over the time period
ciated with the CME propagation. Thus, when one speaksl970-2002 is presented in Table 1. After the numbering of
about the source of the solar proton event, these two differthe events the first two columns of this Table are the date and
ent sources are mentioned. Time profiles of SPEs appear tthe onset time of each event. The time interval with inten-
be different for these two sources and depend on the relativgity >90% of the peak flux (peak duration) and peak flux are
position of the observation point. given in the next two columns.

In order to demonstrate this difference among SPE char-
acteristics, time profiles for three different cases of SPEs are
presented in Fig. 1a, 1b and 1c. A typical solar proton event
which occurred on 24 September 2001 is given in Fig. la.
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Fig. 3. Time distribution of yearly averaged and maximum intensity
of the SPEs flux from 1970 to 2002.
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10 g 3 Statistical treatment
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2 & 3.1 Correlation analysis
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1970 1980 1990 2000 1970 1980 1990 2000 The relationship of SPEs number with different manifesta-
Years Years tions of solar activity, such as sunspot number Rz, coronal

index (total irradiance of the green corona in line 5303 nm;
Fig. 2. Time distributions of the yearly values @ sunspot num-  Rusin and Rybansky, 2002), solar flare index (total energy
ber, (b) coronal index,(c) solar flare index(d) SXR flares num-  emitted by H, flares; Ozguc and Atac, 1994), SXR flares
ber, (¢) SXR flares number with importanceM4 and (f) proton  registered by GOES satellites, is analyzed. All relevant data
event number with E10 MeV and peak intensity 10 pfu, during are extracted from NOAA SEC data base.
the time interval 1970-2002. Time distributions of these solar activity indices, as well

as of the number of SXR flares of importane&14 over the

time interval 1970-2002, covering more than three solar ac-
tivity cycles, are presented in Fig. 2. We can say that sunspot

The next five columns concern Ha flares identified as the . ]
r&umbers, coronal index, solar flare index and SXR flare num-

source of SPEs. These columns consist of onset time, pe X . . :
time, importance, as well as SXR importance (by GOES clasa-ber differ by their maximum values in cycles 21 and 22 by not

0,
sification), flare location and active region number. The last1O"€ than 20%. On the contrary, the number of solar proton

column of the Table indicates cosmic ray variations recordetzle\./emS in the maximum of C.yCI? 22 is double in comparison
at the neutron monitors as ground level enhancements. Wit ith cycle 21. The events d_|str|but|on_for solar cycle 22 dif-
this catalogue we obtain a possibly homogeneous data s rs completely from those in the previous cycle. About 70%

- . LS e these events originated during the three years at the maxi-
mprising 2 PEs th rovi ignifican istical’ . . )
comprising 253 SPEs that provides a significant statist Camum of this cycle, that is in agreement with the result of Shea

basis. Furthermore, as the catalogue covers the descendin%d Smart (1995). The results can also be confirmed by the

phase of the cycle 20, two solar cycles, 21 and 22, and th lculati f . d | d intensity of th
ascending phase of the cycle 23, it enables us to analyze thgfcuiation of maximum and yearly averaged intensity ot the

. §PES flux. These intensities appear to be ten times smaller
Ion_g _t|me dependency of the SPEs and flare-related charac”;] the period 1970 to 1988 thanp{)hose in interval 1989 up to
teristics (Temmer et al., 2001). L )
2002, as can be seen in Fig. 3. The increased occurrence rate

In our Table only large events with energyglOMeV and  of the SPEs during solar cycle 22 is in accordance with the
peak intensity>10 pfu are included, while smaller events number of solar flares ot M4 importance.
with intensity <10 pfu are not selected (Shea and Smart, Comparing yearly values of proton events with sunspot
1990). Possible differences between our Table and other relrRumber, coronal index, solar flare index, total SXR flares
ative tables are due to the fact that this Table is mainly baseénd SXR flares o=M4 importance, we have found that
on the catalogue of solar proton events edited by Logachethe largest values of the correlation coefficient among these
(Moscow University) which is not commonly used. This cat- parameters are those for coronal index (&:885) and for
alogue is a very useful issue, as it collects measurementSXR flares with importance M4 (0.814+0.07). Scatter plots
from Neutron Monitors, balloons and different satellites con-and linear approximations of the SPE yearly number de-
taining time profiles and combined spectra of each event wittpendences on the above mentioned parameters, are given in
maximum intensity>1 pfu. Fig. 4. We do not discuss how the coronal index is connected
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Fig. 6. Longitudinal distribution of the associated with SPEs flares

Fig. 4. Scatter plots and linear approximations of SPEs yearly num_and of the flares related to GLEs concerning the number of them

ber dependences on the total SXR flares, sunspot number, solar flagezgeﬁ))anel) and the mean flux per 2@ngitudinal interval (right
index, coronal index and SXR flares with importancil4. P '

The longitudinal distribution of the associated SPE flares
and the distribution of the flares connected with GLEs are
presented in Fig. 6. The associated flares are more widely
distributed from the east limb to 120/ and centered within
the longitude interval 40&£80 W, that is in accordance with
previous works (Van Hollebeke et al., 1975; Sladkova and
Bazilevskaya, 2000). In our case longitudinal distribution of
the associated flare number, as well as of the mean flux of
the corresponded SPEs, demonstrate that most of the SPEs
originate from flares located western t&'¥4 It is interesting
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R f i that only one of the GLEs has been registered from a flare
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Years from flares located near the west limb. It is noteworthy that

ten of the forty-two GLEs examined here are caused by “over
Fig. 5. “Butterfly diagram” of the associated with SPEs flares for the limb flares.
the interval 1970-2002 is presented in the lower curve. Time profile
of the sunspot number is also given in the upper curve. 3.2 Time delay

. . _ . . _ It is known fromy-line observations that protons can be ac-
with the high-energy particle production, but this fact is re- celerated up to 10-30 MeV energy during the rising phase of
markable. From the other side it is natural to assume thaEhe flare and near the time of the flare maximum (Ramaty
so!a}r activit){ V.Vith ?’Oft X-rays of importanceM4 hav.e.an and Mandzhavidze, 1993; Chupp, 1987; 1996). There are
ability FO emit into mterplanetary_s_pgce protons sufficient to evidences that additional prolonged acceleration takes place
gelreglite{egg()efr the Earth’s vicinity as SPEs (Kurt, 1990when the magnetic field in the flare region undergoes its

eovetal, ): o . . restoration after the mass ejection and shock wave forma-

The interplanetary magnetic field lines constitute an tion in the lower corona (e.g. Akimov et al., 1996). The
Archimedian spira! ina F:oordi_nate sys.tem with a fixed Earth'exact time of the escaping of accelerated pr’otons from the
ISun tl";eb At\n Arch?l,gve'déa(\)rgvipflral Ieadllng pagk to thg fSun 'S Sun into interplanetary space is unknown. It means that the
70(;:3 ke /s*? :Ne?’ego K /;1 or? S? a;wm .Sﬂetf] “rom zero value (§=Tescaping) of a time scale cannot be defined

Km . 0 SUOKMIS =, respectively. A prior, IT1Ihe ‘as- unambiguously. A suggestion was made that the time of the
sociated” flare is situated inside or near this longitudinal in- Ha flare onset (Table 1, column 6) is taken afdr our time
terval, the protons have t_he highest probability to be regis—rule. Then, using the ’time maximum of the SPE as Tmax
tered near the Earth's orbit (Table 1, column 4), the time delayT between the proton

event maximum and the onset time of the Fassociated
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60 . . . . some of them can possibly be connected with “over the limb”
flares, in some cases the identification could not be done defi-
5l nitely, while some others are related to CMEs, not associated
@ with flares.
Thus, a “butterfly” diagram—that means a time dependence
. 40T | of the solar latitudinal distribution of the “associated flares”
2 is presented in Fig. 5. Monthly values of sunspot number are
€ 301 il also given in this Figure, and the arrows indicate the start of
o . each cycle. It is known that solar flares follow the “butter-
% ol ] fly” diagram, by which every cycle starts with flares at high
latitudes (greater than 35while it ends with flares at low
1ol latitudes. It is interesting to note, that in our case the lati-
tudinal distribution of the associated flares seems to have a
similar distribution to total flares and sunspot number. How-
0— | ever, the sources of SPEs with large fluxes are often located
: : ‘ ' : ‘ ‘ : at high latitudes greater than 2(QTable 2). Apparently, the
6 4 M oA A M A #© 7A protons can propagate easily from relatively high latitudes to
Time delay (hours) the ecliptic plane.
. SPEs with GLE (b The result of our treatment on SPEs with respect to the
— SPEs with time delay <20 hours 5 calculated time delayAT is demonstrated in Fig. 7a. One
7 SPEswiihiims delay> 20 hours 1202 can see a very pronounced maximum in the time deldy
1o 2 from 3 to 9 h, followed by a long lasting tail. SPEs can be
N S R T ------- 1 1B separated into two groups depending/on values: the first
"""" - ' ‘ o @ one includes events withT <20 h and the second one re-
o o5l garding events wittAT>20 h. Longitudinal distributions of
€ 20} the “associated flares” in these two groups are depicted in
E 113: Fig. 7b. The distribution of GLEs is also presented in the
o 5t E ,‘,AW same figure. “Associated flares” in the first group obviously
0 exhibit the same longitudinal distribution as those associated
120 80 40 o0 a0 80 120 with GLEs, with most of them located in the Western Hemi-

sphere.

This SPEs separation with respect to the time delay be-
Fig. 7. (@) The SPEs number with respect the time delay betweentween the flare onset and the event maximum was found in
the proton event maximum and the onset time of the Ha “associatediccordance with the main properties of the proton’s inter-
flares” is presentedb) The longitudinal distribution of the SPEs in  planetary transport. If an event hasl <20h, we may be
three cases (with GLE, with time delay20 h and with time delay  sure that the registered event is “prompt”, that means the pro-
>20h) is also illustrated. ton transport is mainly caused by diffusion (Miroshnichenko,
2001). For the events of the second group an influence of
shock waves and CMEs on the particle propagation and ac-
celeration is noticeable. Sometimes the events withbe-
tween 206-30 h are of “prompt” increases. In some cases the

Longitude

Table 2. SPEs number and Imean in latitude® and <20°.

Latitude SPEs number Imean time of the peak maximum Tmax was coincided with a very
(pfu) fast shock arrival at 1 AU. Careful examination of the events

> 20° 59 3524 with AT>30 h shows that these are shock-related events.

< 20° 162 790

3.4 Peak-size distributions

The frequency distributions of our data set at the threshold
flare” AT=T,4-Towas calculated. Of course the choice of proton energy of 10 MeV and peak intensity10 pfu rep-
To is not physically correct, but it is acceptable, as the timeresented by power law as dN/di=1, where N is the num-
resolution of our analysis is greater or equal to one hour.  ber of events per flux interval and | is the mean particle flux

in this interval at energy-10 MeV, are presented in Fig. 8.
3.3 Associated solar flares This figure includes differential frequency-size distributions

of the peak value selected SPEs for three separate subsets.
A number of 231 |/SXR flares have been identified with The first subset contains the total number of SPEs (upper
respect to the solar proton events of our catalogue, nameganel), the second group contains the “prompt” SPEs with
as “associated” flares of SPEs. From the rest of the SPEEime delay<20h (middle panel) and the third one presents
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SPEs associated with GLEs (bottom panel). The first and
second cases can be described by power law with expo-
nent v=-1.36+0.04 andv= -1.30+0.02, respectively. The
turnover near two bins (30Imax<300 pfu) is seen in the
peak-size distribution for the events with GLEs caused by __
threshold effects of the neutron monitors. The power law ap-
proximation outside the first bin (30Imax<100 pfu) gives

v= 1.12 4+ 0.16. It is noticeable that a difference in the
slopes between the differential distributions at 10 MeV and
>500 MeV(GLEs) has appeared. Hence, in our study the
spectral indices vary from 1.12 to 1.36. Such a difference in __
the slopes of solar proton events in different energy channels @
(>10MeV, > 30 MeV, > 60 MeV, >100 MeV,> 500 MeV)

for the time period 1970-1995 is also reported by Kurt et
al. (2002). It indicates the existence of a slope dependence
on the proton energy under consideration (Miroschnishenko
etal., 2001).

Our results are consistent with spectral indices of solar
proton events published earlier, as HIb1 (Van Holle-
beke, 1975), 1.450.15 (Belovsky and Ochelkov, 1979),
1.35£0.15 (Kurt, 1990), 1.%0.12 (Gerontidou et al., 2002).

In our case our results are based on the best statistics and given
the verification of the spectral index that is very important for %3
the models of flare energy release.

(total SPEs

dN/

PEs)

4 Discussion and conclusions

dN / dI (fas

In this work the first attempt to accomplish an extended sta-
tistical analysis of solar proton events with energl0 MeV
and peak flux>10 pfu observed at 1 AU through January
1970 to December 2002 is performed. A catalogue of 253
events based upon satellites and ground level observations is
created and presented. Solar proton event evolution steps, as_
time dependence over three solar cycles, longitudinal and lat-{}
itudinal distributions of the parent flares and distribution of 6'
the time delay between the Ha flare onset and the SPE maxi-~—
mum are analyzed. The frequency peak flux distributions are 5
also obtained. E
Summing up the main results of this study we note that, ©
together with appropriate results published since 1975, our
findings provide new and important information about some
features of the Sun’s proton productivity and its relation to
existing problems of particle acceleration at/near the Sun.

1. It is characteristic that the numbers of SPEs and SXR
flares of importance-M4 are almost the same during
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the solar cycles 21 and 22. It is noted that one per sixFig. 8. Peak size distributions of the total number of SPEs with
of these SXR flares is associated with an SPE. In theenergies E10MeV (upper panel), of the fast SPEs (middle panel)
cycle 21 the number of SXR-flares of importanem4 and of the SPEs connected with GLEs (lower panel) that appeared.

is 478 and the number of SPEs is 78, while during the
solar cycle 22 the number of SXR-flares of importance
>M4 is 460 and the number of SPEs is 73.

The occurrence rate of SPEs and SXR flaxdd4 in
relation to other manifestations of solar activity seems
to appear as a significant increase during the maximum
of solar cycle 22. It means that solar activity with soft x-

rays of importance-M4 have an ability to emit protons
sufficient to be registered near the Earth’s vicinity as
SPEs, but not all of them are accompanied by a proton
event.
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2. Dependence of solar latitude distribution of parent flaresBasilevskaya, G. A., Vashenyuk, E. V., and Ishkov, V. N. et al.: in
of SPEs on the solar cycle seems to have the same be- Yu, I. Logachev (ed), Solar proton events Catalogue, WDC-B2,
havior as the sunspot number. Every cycle starts with Moscow, 1983; 1986.
flares at high latitudes and ends with flares at low lat- Belov A., Kurt, V., Gerontidou, M., and Mavromichalaki, H.: Sta-
itudes. The sources of SPEs with large fluxes are of- tistical analysis of solar proton events in different energy chan-
ten located at high latitudes greater tharf.20Pro- nels, Proc. 27th ICRC 2001, 3465-3468, 2001.

tons can bropadate easilv from relativelv hiah IatitudeSBe|OVSky’ M. H. and Ochelkov, Yu. P.: On some pecularities of
propag y y hig generation of electromagnetic and corpuscular radiation in solar

to the ecliptic plane. On the other hand, the longi- {5105 1,vestia AN SSSR, Phys. Ser., 43, 4, 749-752, 1979.
tudinal distribution of the associated flares of SPEScane H. v, Reames, D. V., and von Rosenvinge, T. T.: The role of
shows a preferable connecting region within°&0 interplanetary shocks in the longitude distribution of solar ener-
80°W, which is consistent with previous results (Slad-  getic particles, J. Geophys. Res., 93, A9, 9555-9567, 1988.
kova and Basilevskaya, 2000). The most of the SPESChupp, E. L.: High energy particle production in solar flares (SEP,
are created by flares, located at solar longitude around gamma-ray and neutron emissions),Physica Scripta, T18, 5-9,
70° W. It is in agreement with the distribution of the ~ 1987.
GLE related flares. Chupp, E. L.: Evolution of our understanding of solar flare particle
acceleration:(1942-1995), in High Energy Solar Physics, eds.:
3. The calculated time delay between the proton event R.Ramaty, N. Mandzhavidze, and X.-M. Hua, AIP Conference
maximum and the onset time of the Ha associated flare Proceedings, AIP: New York, 374, 3-31, 1996. _
reveals a pronounced maximum of this time from 3 C"gg; ;S\’;’O:azhggvsbm\’\g riheva'Vé-V Aéiei??or?srn:::&libglliel\n/]ec-
EOA'?:.ZOTFT(I)irrST,])a)\(/I\/rQleJrrZ ;ﬁecg?gt?)ztetgar\:\gého:f Isst ren\;ei:;[; electrons in solar cosmic ray flares,Ap. J., 260, 362-370, 1982.
! Cli

d by diffusi hil | . delav i lated ver, E. W., Reames, D. V., Kahler, S. W., Cane, H. V.: Size
caused by diitusion, while a long time delay Is relate distribution of solar energetic particle events, Prot“2¢RC,

to shock events. Dublin, 3, 25-28, 1991.

. . Crosby, N. B., Aschwanden, M. J., and Dennis, B. R.: Frequency
4. The be_St poyver-law fit for the basic sample Of_ 253 distributions and correlations of solar X-ray flare parameters, So-
events is attained at a slope of 143804 over the entire lar phys. 143, 275-299, 1993,

range of proton intensities $@.0° pfu. The difference  porman, L. I. and Miroshnichenko, L. I: Solar cosmic rays,

in the slopes between differential size distributions at  Moskow, Nauka (Fizmatgiz), English Edition for NASA by In-
>10 MeV and> 500 MeV, obtained on the best statis-  dian national Scientific Documentation Center, Delhi, 1968.

tic, indicates the existence of slope dependence on th&eynman, J., Spitale, G., Wang, J., and Gabriel, S.: Interplanetary
proton energy. This result is consistent with other stud-  proton fluence model, J. Geophys. Res., 98, A8, 13281-13294,

ies (Miroschnishenko et al., 2001; Gerontidou et al., 1993 _ _
2002; Kurt et al, 2002). Forman, M. A., Ramaty, R., and Zweibel, E. G.: The acceleration

and propagation of solar flare energetic particles, in: Physics of
5. The mechanisms responsib'e for proton acceleration the Sun, ed: Sturrock P. A., Dordrecht: D. Reidel PUbl.CO., Ch”,

and SPEs are widely discussed in the literature, with 249-289, 1986. S
much controversy in particular over the role of flares. Gabiriel, S.. B. and Feynman, J.: Power-law distribution for solar
Our results not only confirm but give quantitative char- energetic proton events, Sol. P_hys" 165, 337_.346’ 1996' )
acteristics of the SPE relation to the flares that may beGabrleI, S. B. and Patrick, G. J.: Solar energetic particle events:
henomenology and prediction Space Sci. Rev. 107, 55-62,

used for prediction of these events and radiation fore- 2003_ » P P

casting (Gabriel and Patrick, 2003). Gerontidou , M., Vassilaki, A., Mavromichalaki, H., and Kurt, V.:

] ) Frequency distributions of solar proton events JASTP 64, 482—
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