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Abstract One of the most critical points in the detection of cosmic rays by neutron moni-
tors is the correction of the raw data. The data that a detector measures may be distorted by
a variety of reasons and the subtraction of these distortions is a prerequisite for processing
them further. The final aim of these corrections is to keep only the fluctuations related to
the real cosmic-ray intensity. To achieve this, we analyze data from identical neutron mon-
itor detectors which provide a configuration with the ability to exclude the distortions by
comparing the counting rate of each detector. Based on this method, a number of effective
algorithms have been developed: Median Editor, Median Editor Plus, and Super Editor are
some of the algorithms that are being used in the neutron monitor data processing with sat-
isfactory results. In this work, a new approach for the correction of the neutron monitor
primary data with a completely different method, based on the use of artificial neural net-
works, is proposed. A comparison of this method with the algorithms mentioned previously
is also presented.

Keywords Cosmic rays · Data processing · Neutron monitors · Neural networks

1. Introduction

Galactic cosmic rays, mostly protons and heavier fully stripped nuclei, are accelerated in
our galaxy by shock waves originating from supernova explosions and from other energetic
stellar sources. After traveling millions of years in our galaxy, they arrive in the solar system
as highly isotropic and stable flux. On the other hand, solar cosmic rays are produced during
high-energy events at the Sun. The solar cosmic-ray particles can travel away from the Sun
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along the open magnetic field lines and produce secondary cosmic-ray particles by their
interaction with the atmosphere of the Earth.

The worldwide network of ground-based particle detectors measures time series of the
secondary particles produced by the interactions of the primary cosmic-ray particles in the
terrestrial atmosphere. The neutron monitors (NMs) located at different latitudes, longitudes,
and altitudes have been monitoring the secondary cosmic-ray flux for more than 60 years to
detect abrupt changes in intensity and/or long-term trends. The geomagnetic field and the
atmospheric depth are very different among the detector locations and each detector has to be
treated individually, in order for its data to be utilized (Carmichael, 1964; McDonald, 2000;
Simpson, 2000).

The long-term operation of the proportional counters of the neutron monitors and the
data acquisition electronics may suffer from several errors (spurious peaks due to electronics
failures or lightning, drift of the count rate by degradation of detectors, gaps in the time series
due to electricity failures, etc.) which should be detected and smoothed before presenting
the data to the international databases (http://www.nmdb.eu). The remedy for these failures
is comparing the data from different channels, taking advantage of the fact that a neutron
monitor consists of many identical counters. If one channel of the NM is defective it can be
localized and repaired or excluded. However, some neutron monitors are operated at remote
sites, and sometimes the replacement of the failed equipment is not immediately possible.
What is needed is an autonomous system for the correction of the raw data based on the
abundance of the measuring channels.

For the analysis of the cosmic-ray measurements, it is necessary to “purify” (correct,
filter, and smooth) the raw data. The quality of the data, the different types of instrumental
variation, their possible causes, and the methods of their correction has been already ana-
lyzed (Belov et al., 1988; Chilingarian, Hovhannisyan, and Mailyan, 2009; Hovhannisyan
and Chilingarian, 2011). Filtering algorithms are usually based on the comparisons of data
from identical measurement channels. Currently, for the online comparison of similar chan-
nels, two methods are proposed: the median method and the method of the ratio logarithms
which has clear advantages in comparison with the ordinary method of ratios (Yanke et al.,
2011, ftp://cr0.izmiran.ru/HELP_Station/EDITORs).

The algorithms based on median filtering are currently widely used in pattern recogni-
tion, in multimedia technologies, and in scientific applications. For instance, to maximize
data output from single-shot astronomical images, the rejection of the cosmic-ray back-
ground is performed by median algorithms (Farage and Pimbblet, 2005). Moreover, Van
Dokkum (2001), using conventional algorithms noticed that the cosmic rays in single im-
ages or spectra can be removed by a variant of Laplacian edge detection. The procedure is
robust, and requires very few user-defined parameters. The method rejects the cosmic-ray
hits of arbitrary size and distinguishes under-sampled point sources from cosmic rays with
a high confidence.

The Athens Neutron Monitor Station located at the Physics Department of the Athens
University consists of six proportional counters of Super 6NM-64 type (Mavromichalaki et
al., 2001, http://cosray.phys.uoa.gr). Currently the correction of the data is performed by the
application of the Median Editor (Yanke et al., 2011). In this method, the ratio of the last
counting rate compared to a previous one is evaluated for each counter. This counting rate
then is reproduced by using the median value of all the ratios.

In this study a new approach using an artificial neural network method (referred to as
ANN from now on) is proposed for the primary data processing of the neutron monitor
measurements. The ANN is a well-known computational tool that can be used in many ap-
plications in a variety of fields. Even in the field of the cosmic-ray research, the ANN has

http://www.nmdb.eu
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already been used for different purposes, other than the primary data processing. For ex-
ample, an event-by-event study of the mass identification in high-energy cosmic rays was
carried out with simulated data and based on the neural network method (Riggi et al., 2007).
Extensive air showers were simulated with the CONEX code, using the hadronic model
QGSJET-II-3. The effectiveness of the method in recognizing the mass of the primary par-
ticles was tested making use of the parameters extracted from the simulated longitudinal
profiles. They showed that the designed neural network is able to discriminate, with high
identification efficiency and purity, between proton- and iron-induced showers.

General information regarding the ANN can be found in several references over the In-
ternet (http://en.wikipedia.org/wiki/Artificial_neural_network). In this work the ANN method
is applied for the first time to the cosmic-ray data of the Athens Neutron Monitor Station in
the phase of the primary data processing. The obtained results are compared with the ones
achieved by the Median Editor algorithm which is currently used in the Athens Cosmic-ray
Station. The most important general points of the ANN concept are described in Section 2,
while the data processing of the neutron monitors is described in Section 3. The ANN ap-
proach on neutron monitor data and the comparison with the Median Editor results are given
in Sections 4 and 5, respectively. The conclusions from all this analysis are presented in Sec-
tion 6.

2. General Principles of Artificial Neural Networks

An ANN is composed of two or more layers and each one of them is composed of nodes
named “neurons”. The nodes of each layer are connected with the nodes of the next layer
through connections named “synapses”. Each synapse is related to a weight factor which
acts as a multiplier factor when a value is transferred through it. At each neuron, the in-
put values are summarized and the result is processed by an activation function (usually a
sigmoid function, http://en.wikipedia.org/wiki/Sigmoid_function). The output of the neuron is
transferred to the next layer and the process continues until the last (output) layer. A general
structure of an ANN is given in Figure 1. It is obvious that an ANN consists of at least two
layers, an input and an output layer. Apart from them, it is possible to have inner layers,

Figure 1 Artificial neural network structure.
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which are called “hidden layers”. The number of layers and the number of nodes in each
layer compose the architecture of the network.

When the ANN is firstly created, synapses are assigned with default or random values. In
order to produce a correct output for a specific input of the network, synapses should have
correct values. This is achieved through a learning procedure, during which the network is
fed with training data (usually simulation data) and is forced to output the desired result. The
network compares the actual output with the desired one and adapts the weights in individual
small steps. The sample that the ANN is fed is called training sample and contains data of
a variety of cases since the aim is to achieve a general behavior after training. To feed
the network with all the sample of the training data is called an epoch of training. The
learning procedure takes several epochs before it is considered completed. The progress of
the training is supervised after one or more epochs, by a test sample. During this procedure,
the network is fed with the test data and the actual output is compared to the output of the
test sample. It should be emphasized that the training procedure takes place only once, at
the beginning of the ANN set up. After that the ANN is ready to be used and gives a quick
response for a defined input.

The critical points that should be taken into account when using an ANN are the follow-
ing. The first point concerns the architecture that should have the appropriate complexity in
order for free parameters to exist. A less complicated architecture will not solve the problem
efficiently, while a more complicated one will obstruct the ANN from getting trained. In
other words, when designing an ANN, a balance of the complexity of the layers and neu-
rons has to be found. However, the most critical point when using an ANN is the training
sample, since it represents the desired behavior of the network. Obviously, a wrong behav-
ior of the network after its training should be firstly attributed to the training sample. The
creation of the training sample should follow a thorough analysis of the problem and of the
desired behavior of the network. Finally, one more thing that should be emphasized about
the training is the required number of epochs. The epochs should be as many as needed and
no more, otherwise the network will learn to react perfectly only with the training sample
and will lose the ability to handle correctly the real data. In this case the network would be
considered as “over-trained”.

Apart from these critical points, there are many points that should be taken into account
when designing and training an ANN. These points concern the choice of the activation
function, the momentum of weight adaptation, the cutoff of some synapses, and the train-
ing algorithm. The discussion of these points is not presented in this paper. They are just
mentioned to highlight that the behavior of an ANN depends on and can be optimized by
changing all these parameters.

3. Primary Data Processing of Neutron Monitors

In this section the problem of primary data processing is discussed. The detection of the
nucleonic component of the cosmic rays is performed by using neutron monitors, as the one
of the Athens Cosmic Ray Station. The counting rate that each counter measures mainly
depends on four items:

i) the actual incoming intensity of the cosmic rays,
ii) static characteristics of the detector and the electronics that support it,

iii) statistical variations that exist because the procedure of neutron detection in each
counter is of a statistical nature (Carmichael, 1964; Simpson, 2000), and
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iv) undesired instrument variations such as voltage and amplifier variations that may lead to
a problematic behavior (Belov et al., 1988; Chilingarian, Hovhannisyan, and Mailyan,
2009; Hovhannisyan and Chilingarian, 2011).

The Athens Cosmic Ray Station consists of six NM64 counters. Let us assume that the
incoming rate of neutrons is N . Ideally, the counting rate that each monitor measures should
be N , as well. However, due to the four items mentioned above, the detector i measures

Ni = N · Ai ± σi ± δi, (1)

where N corresponds to the actual cosmic-ray intensity (item i), Ai corresponds to the de-
tector calibration (item ii), ±σi corresponds to statistical variations (item iii), and ±δi cor-
responds to undesired instrument variations (item iv).

The Ai factor is related to static characteristics of the detector and has no dependency on
time (or in the worst case scenario, a slight dependency on it), if we think of long periods
of time (years). It should be emphasized that even if the detectors of the neutron monitor
are considered as identical, slight differences in their characteristics exist and cause slight
differences in factors Ai .

The parameters that appear in Equation (1) can be identified by comparing the time series
of each counter for a specific period of time. The 1 min measurements of each detector of the
Athens NM for the time period from 1 August 2011 to 15 September 2011 are presented in
Figure 2. In these diagrams, it can be noticed that for a period of 45 days, the curve of each
counter has exactly the same profile. The different counting rate of each counter is due to
the factors Ai . The width of the curves is associated with the statistical variations, expressed
by +σi . The source of some spikes of counters 4 and 6 is the factor ±δi . It is obvious that
these peaks are sporadic, and correspond to a problematic behavior and distort the data.

If it is assumed that there is not any problematic behavior of the instruments (δi = 0 and
δj = 0) and using Equation (1), the ratio Ni/Nj of counters i and j , i �= j becomes

Ni

Nj

= N · Ai ± σi

N · Aj ± σj

= N · Ai · (1 ± σi

N ·Ai
)

N · Aj · (1 ± σj

N ·Aj
)

= Ai

Aj
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N ·Aj
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But since the statistical variations are much smaller than the mean counting rate (σj �
N · Aj ), we assume

1
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Therefore, Equation (2) becomes
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If we keep only the first-order terms, then
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Equation (5) can be written in the form
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· �i,j (6)
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Figure 2 Uncorrected cosmic-ray data of Athens Neutron Monitor Station from 1 August 2011 to 15
September 2011.



ANN Approach of Cosmic Ray Primary Data Processing 309

Figure 3 The histogram of the ratio N2/N1 (upper panel) and the time series of the ratios N2/N1 and
N4/N1 (lower panel) based on the 1-min data of Athens station from 1 August 2011 to 15 September 2011.

where �i,j contains the sum (± σi

N ·Ai
∓ σj

N ·Aj
). Since σi

N ·Ai
� 1 and

σj

N ·Aj
� 1, it becomes that

|�i,j | � 1. Also, since the parameters Ai and Aj are time independent, Equation (6) shows
that the ratio Ni/Nj is fluctuating around the mean value Ai/Aj in a time series.

Using the 1-min raw data of the Athens station from 1 August 2011 to 15 September
2011, the histogram of the ratio N2/N1 is created as shown in Figure 3 (upper panel). In the
same figure (bottom panel), the time series of N2/N1 and N4/N1 are also shown. Applying a
Gaussian fit on the ratio N2/N1, it is noticed that a very high value of correlation coefficient
R2 is found, which means that the Gaussian approximation is sufficient (Hinkley, 1969;
Roldugin and Vashenyuk, 1994). This conclusion is a very important result. If the counting
rate of counter j is known, then the counting rate of counter i can be statistically predicted,
as long as the distribution of Ni/Nj is known. The ratios Ni/Nj for all the combinations
of six counters are calculated in Table 1. In order to exclude the spikes, such as the ones
that are noticed in the plot of N4/N1, the calculation of the mean value and the sigma is
performed in a ±4σ trust interval. These spikes originate from the problematic behavior of
counters 4 and 6 (parameter δi ), as has already been mentioned.
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4. ANN Approach and Implementation

Equations (2) to (6) assume that all the counters are working correctly, so parameters δi

are equal to zero. Actually, in some cases, one or more detectors can measure a counting
rate that is completely different from the counting rate that the other detectors measure.
This measurement implies a problematic behavior of the counter such as the one noticed
in counters 4 and 6. The problem that the primary data processing is called to solve, is
to reject the variations ±δi since they are not related to the variations of the cosmic rays
or to statistical variations and they distort the raw data. The difficulty is that this rejection
should be performed on a real-time basis, at a time when only the past measurements of
the counters are known. So when a counter suddenly measures a value completely different
from the previous one, it is not known if this change is related to a real difference of the
cosmic-ray flux N , to the statistic ±σi of the measurements, or to the factor ±δi .

The rejection of the factor ±δi could be made by comparing the counting rates of all
counters. The general concept is that a sudden change of the counting rate of a detec-
tor is a real change in the cosmic-ray intensity only if similar changes are observed by
the other detectors. This procedure is performed by algorithms that have already been de-
signed. Median Editor, Median Editor Plus, and Super Editor are algorithms that are used
to filter the primary data with good results (Yanke et al., 2011). A different approach of
the problem is discussed in this study. The filtering of the data is performed by using
an ANN method where the uncorrected measurements are fed to the input layer of the
network and the instrument variations filtered out are obtained in the output layer of the
network. The training sample used for the training of the ANN should simulate the pos-
sible measurement states of the neutron monitor, taking into account the statistical vari-
ations of the measurements and the possible instrument variations. The training is per-
formed by feeding the ANN with the simulation data containing instrument variations and
by forcing it to output the corresponding simulation data without the instrument varia-
tions.

The analysis of the previous section is the base used to build up the architecture of
the suitable ANN and the training sample. The generation of the training sample and
the implementation of the ANN is made in C++. The ANN used is the MLP class
from the ROOT data analysis framework, developed at CERN (http://root.cern.ch/drupal;
http://root.cern.ch/root/html/TMultiLayerPerceptron.html). The multilayer perceptron, such as
the one implemented in the ROOT framework, is a feed-forward artificial neural network
that uses the back propagation technique for training and is consisted of at least three layers.

In order to generate the training and test samples, two kinds of random number generator
are used. The first one gives numbers with uniform distribution in a defined range. The
second one gives numbers with Gaussian distribution with defined mean value and sigma.
The random generators are implemented in the TRandom3 class of the ROOT framework
(http://root.cern.ch/root/htmldoc/TRandom.html).

The procedure of generating the training sample is shown in Figure 4 and can be de-
scribed by the following three steps:

i) Using a circular procedure through the generation of the training set, a counter
j is selected and is used as a reference one. For this counter, a counting rate
Nj is generated that corresponds to its measurement. The range of the generated
Nj was decided after browsing the Athens Cosmic Ray station data, from the be-
ginning of its operation. By browsing the uncorrected data of the Athens station
(http://cosray.phys.uoa.gr/Local_Data/form.html), it can be found that the counting rate

http://root.cern.ch/drupal
http://root.cern.ch/root/html/TMultiLayerPerceptron.html
http://root.cern.ch/root/htmldoc/TRandom.html
http://cosray.phys.uoa.gr/Local_Data/form.html
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Figure 4 Generation of training and testing samples.

for the last 10 years is between 42 impulses s−1 and 65 impulses s−1 for the whole moni-
toring system, which means 420 – 650 impulses min−1 for each one of the six monitors.
In order to teach the ANN to have a more general behavior, it was decided to define
the counting rate of the reference counter in the range of 350 to 750 impulses min−1,



312 P. Paschalis et al.

Table 1 Mean values and standard deviations (sigma) of the ratios for all the counter combinations.

Counter ratio distributions

Counter 1 Counter 2 Counter 3 Counter 4 Counter 5 Counter 6

Mean Sigma Mean Sigma Mean Sigma Mean Sigma Mean Sigma Mean Sigma

R
ef

er
en

ce
co

un
te

r 1 1 0 1.021 0.074 0.893 0.068 0.885 0.069 0.849 0.065 0.895 0.060

2 0.984 0.071 1 0 0.876 0.059 0.870 0.074 0.833 0.056 0.879 0.067

3 1.126 0.085 1.146 0.077 1 0 0.995 0.087 0.954 0.074 1.006 0.080

4 1.134 0.078 1.156 0.088 1.011 0.080 1 0 0.961 0.078 1.013 0.079

5 1.184 0.090 1.205 0.081 1.054 0.082 1.046 0.093 1 0 1.057 0.084

6 1.122 0.075 1.144 0.086 1.000 0.079 0.992 0.085 0.951 0.075 1 0

which covers the actual counting rate of the Athens NM station. Since for a long period
of time a counter could measure all the values within the defined range with the same
probability, the uniform random number generator is used for the generation of Nj .

ii) After Nj has been defined, the other five Ni (i �= j) should be generated as well. For
this task a Gaussian random number generator is used. The generator produces five
values that correspond to five ratios Ni/Nj , the distribution of which were calculated
in the previous section and are shown in Table 1. Each ratio is multiplied by the value
of Nj that was generated in the previous step. The result is the generation of the other
five Ni . The steps i) and ii) produce a set of six values that simulates a measurement
of the Athens neutron monitor in a condition where no erroneous behavior is present.
More specifically, this set contains only statistical variations (±σi) and no instrument
variations (±δi). This set is assigned to the output of the ANN.

iii) In the third and last step, the generation of the input layer of the ANN is done by the
following procedure. For each Ni produced in the previous step, a variation δi is as-
signed with a probability of 33 %. By selecting this probability, on average, two out
of the six counters in each sample have an instrument variation. This is performed by
using a uniform random generator, and by checking whether a generated number in the
range between 0 and 1 is greater or less than 0.33. In the case the number is greater
than 0.33, then the value Ni remains unchanged, otherwise the following procedure is
performed. Using again a uniform random generator, a variation δi is generated in the
range between 0 and 300. This range is selected for two reasons: a) since the instru-
ment variation corresponds to an erroneous behavior, it is not possible to define a lower
threshold, so it is set to zero and b) an upper threshold with a value more than 300 does
not seem to improve the training of the ANN or the results, which means that 300 is an
optimal value. This variation δi is added to or subtracted from Ni according to the algo-
rithm shown in Figure 4. The result of this step is the distortion of some of Ni values.
This new set of values is assigned to the input of the ANN.

By following the steps above, a training sample that exceeds both the characteristics of
the real cosmic-ray measurements and the sporadic instrument variations was created. The
counting rate exceeds the real counting rate of the last 10 years. In the training sample, two
counters on average have an erroneous behavior, which is a rather rare case since the most
common case is only one counter to present such a behavior. However, it is preferred to use
the more general training sample, aiming to create an ANN that reacts correctly even in the
most difficult cases. The generated training sample consists of 12 000 samples, 10 000 of
which are used by MLP for training purposes and the rest for testing purposes. This number
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Figure 5 The error index of the test sample for various numbers of neurons in the hidden layer (upper panel)
and the error index of the training and test samples for one hidden layer with 30 neurons (lower panel).

of training cases was found to be the optimal one for the multiplicity of the ANN that is
trained.

After defining the input layer, the output layer, and the training sample, the best number
of hidden layers is found with a trial process. It was found that the most optimal training
and the best results were noticed when only one hidden layer was used. The results when
using two hidden layers were worse, while the training for more than two hidden layers was
not possible. In the case of the architecture with one hidden layer, the optimal number of
neurons is determined again by a trial process. The error index of the testing sample during
the training procedure, for various cases of the hidden layer, is shown in the upper panel of
Figure 5. As can be concluded, the best results were produced when 30 neurons were used.



314 P. Paschalis et al.

Table 2 ANN parameters used
in this work. ANN parameters

Architecture Input (6) : Hidden (30) : Output (6)

Activation function Sigmoid

Learning method Stochastic

Eta parameter 0.1

Training Sample 10000

Test Sample 2000

Weights Initialization No randomization

Inputs Normalized

Epochs 1000

Training time ≈10 minutes @ Intel i7

The use of more than 30 neurons gave similar results and was not selected since it is better
to keep the network in the simplest architecture. The progress of the ANN training for the
case of 30 neurons is shown in the bottom panel of Figure 5. Based on this plot, the optimal
number of training epochs was found to be 1000. At this point the error index of the test
sample has already converged to its final value, which means that the continuation of the
training implies a danger of making the ANN over-trained. Finally, all the parameters of the
ANN architecture and training procedure are given in Table 2.

5. Results

For comparison reasons and before announcing the results of the primary data process-
ing using the ANN, the correction of data by using the Median Editor is presented. The
profiles of the uncorrected versus corrected data for the period of 1 August 2011 to 15
September 2011 using Median Editor are presented in Figure 6. In this figure only coun-
ters 4 are 6 are presented since they are the ones with the problematic behavior. The
data used were retrieved from the local data base of the Athens Cosmic Ray Station
(http://cosray.phys.uoa.gr/Local_Data/form.html), where both the uncorrected data and the
data corrected with Median Editor are stored. As can be seen, the Median Editor success-
fully filters the primary data. The problematic peaks in counter 4 and counter 6 are cut. The
only problem with this method is that it also filters some of the real statistic of the counter
measurements. This can be seen by the margin between the uncorrected and the corrected
data, even in the cases where there are no problematic peaks.

The respective results using the ANN are shown in Figure 7. It is obvious that the selected
architecture corrects efficiently the data. All the problematic peaks of counters 4 and 6 are
filtered. Also, compared to the Median Editor algorithm, the ANN filters less the real statistic
of the measurements, as can be seen by the smaller margin between the uncorrected and
the corrected data. This improvement can be visually determined and will be statistically
determined in the following paragraphs.

In order to verify the good performance of the ANN, the same ANN is applied to the
Athens Cosmic Ray Station data of February 2011, which was a more cosmic-ray active
period. The results are illustrated in Figure 8 where the corrected data of counter 6 are
presented. The respective diagrams for the other counters have the same pattern. From this
diagram, the good performance of the ANN is verified. The corrected data follow accurately

http://cosray.phys.uoa.gr/Local_Data/form.html
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Figure 6 Correction on the data of Athens Cosmic Ray Station from 1 August 2011 to 15 September 2011
using Median Editor.

Figure 7 Correction on the data of Athens Cosmic Ray Station from 1 August 2011 to 15 September 2011
using ANN.

the fluctuations of the uncorrected ones and all the problematic peaks of counter 6 are filtered
successfully.

As has been described above, the correction methods in general aim to filter all the prob-
lematic peaks while leaving unchanged the rest of the measurements. However, as can be
seen in the presented results, there is a margin between the corrected and the uncorrected
data in both Median Editor and ANN methods. This means that both methods, apart from
the problematic peaks, compress also the statistic of the measurements even in the areas
where there is no erroneous behavior. In order to determine the effect on the non-erroneous
data, a quiet period of measurements where the counting rate is almost constant and with-
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Figure 8 Correction on the data of Athens Cosmic Ray Station for the disturbed period of February 2011
using ANN.

Figure 9 Median Editor (upper plot) and ANN method (bottom plot) applied to data without errors (Athens
Cosmic Ray Station for 17 – 21 August 2011).

out any problematic peaks is selected. The period 17 – 21 August 2011 is selected due to
its low activity. For this period of time, the mean value and the standard deviation of the
uncorrected data, the data corrected with the Median Editor and the data corrected with the
ANN method data are calculated. The diagrams that correspond to the Median Editor, and to
the ANN method are shown in the upper and bottom plots, respectively, of Figure 9. In this
figure only counter 1 is shown since the rest of the counters have similar pattern. The calcu-
lation of the mean value and the standard deviation for the three series of data can be seen in
Table 3. According to this table, the Median Editor, and the ANN method have similar per-
formance. The mean value of their data is almost the same and very close to the mean value
of the original uncorrected data. However, the ANN method reduces the standard deviation
of original data less than the Median Editor, which is an improvement.

The compression of the standard deviation of the data is a known issue that the filtering
algorithms present (Yanke et al., 2011). The general principle of all the algorithms is that the
subtraction of the undesired variations is performed by comparing the measurement of each
counter with the measurements of the rest of the counters. Unfortunately, this procedure
suppresses the data towards the mean value of the measurements, and as a result the real
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Table 3 Statistics of Athens cosmic ray data for the quiet period of 17 – 21 August 2011.

Uncorrected data Corrected with Median Editor Corrected with ANN

Mean
value

Standard
deviation

Mean
value

Standard
deviation

Mean
value

Standard
deviation

Counter 1 598.69 31.43 598.8 18.01 598.21 23.65

Counter 2 609.28 31.92 610.49 18.36 608.52 25

Counter 3 533.83 30.51 532.59 16.02 532.08 22.11

Counter 4 529.65 29.26 527.72 15.87 531.13 23.18

Counter 5 507.33 29.59 505.33 15.2 505.75 20.96

Counter 6 534.48 30.02 536.49 16.14 534.09 21.52

statistic is affected. In order to overcome this issue, the Median Editor has been improved
to the Median Editor Plus version. The Median Editor Plus is the same algorithm but the
correction of data is performed only to the counters that violate specific statistical criteria.
As a result, only the problematic counters are corrected while the counting rate of the rest
of the counters remains unchanged. The same procedure can be applied in the case of the
ANN algorithm since the determination of the problematic counters through the violation of
the statistical criteria does not depend on whether the method used for the correction is the
Median Editor or the ANN algorithm. However, in the case of a problematic counter, the use
of the ANN will give a better prediction of its correct value than the Median Editor does.

6. Conclusions

In this work, the application of the Artificial Neural Networks in the primary data process-
ing of the cosmic-ray intensity registered by Athens Neutron Monitor Station was analyzed
thoroughly. From this study it is concluded that the obtained results from the applied ANN
method seem to have some advantages compared to the ones achieved by the Median Ed-
itor that is used currently for the filtering of the neutron monitors data. This is concluded
since the ANN method effectively removes all the sporadic instrument variations, while it
compresses the standard deviation of the rest of the data less than the Median Editor does.
Moreover, the development of an ANN Plus method can be applied similarly to the Median
Editor Plus, where the filtering of the data is performed only in the counters that present an
erroneous behavior. Finally, in order to verify the accuracy and stability of the ANN method
for a long time period, the trial application of the method can be performed by applying it
to the Athens Cosmic Ray Station raw data in a real-time basis.

The implementation of new correction algorithms for the cosmic-ray monitoring data is
of great importance nowadays. The technological growth and the expansion of the Inter-
net, which makes easy the instant transfer of the information, allows the development of
applications that gather the measurements of experiments and scientific programs world-
wide, such as the neutron monitors, and use them in various physical models, producing
physical results. For instance, the methods of space weather prediction are currently more
advanced and the previous methods are now replaced by integrated knowledge-based neuro-
computing models and other methods. Within the ESA Space Weather Program Study for
example, a real-time forecast service has been developed for space weather and its effects.
This prototype is now being implemented for specific users such as a power company sys-
tem operator, who needs prediction of the local value of geomagnetically induced currents
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or a science tourist who needs to know whether or not aurora will occur. Soon it might
even be able to predict the tropospheric climate and weather changes caused by the space
weather (Lundstedt, 2005). Moreover, one more critical application that makes direct use
of the neutron monitor data worldwide is the alert system that is operated in Athens Neu-
tron Monitor Station in the framework of the High-resolution Neutron Monitor Database
(http://www.nmdb.eu/) and predicts the onset of the ground level enhancements of cosmic-
ray intensity (GLEs) (Mavromichalaki et al., 2010). These kinds of application are highly
dependent on the quality of data that are used. The use of erroneous data that are not related
to the observed physical phenomena will definitely result in erroneous operation of the ap-
plications that make use of them. For all the above-mentioned cases, we believe that the use
of the ANN method proposed in this work for the primary processing of neutron monitors
raw data will improve all these applications since it could provide high-quality cosmic-ray
data.
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